3 步低代码构建 AI 股票分析助手

在金融服务行业的数字化转型浪潮中,构建一个灵活、可扩展、高度可用的现代 IT 架构是金融机构面临的重中之重。在这一过程中,生成式人工智能(Generative AI)正成为助力金融从业者提高工作效率、优化决策过程的重要工具。

在金融市场上,买方机构通常会努力发掘有关金融市场运作的信息,以期获得战胜市场的能力。他们通常需要发掘对投资组合风险有重大影响的风险因子,比如市场因子、行业因子、规模因子、价值因子等;并且收集与选定风险因子相关的数据,包括股票收益率、行业归属、市值、账面市值比等。这些因子经常需要从原始数据(新闻,财务报表,网页等)进行 ETL 来清洗生成。然后基于选定的风险因子和处理后的数据,构建风险模型。他们的研究人员利用内部构建的各种工具和算法查询数据,从中获得洞见。基金公司通常会从外部来源或数据提供商处获取金融市场数据,准备分析并创建数据湖。研究分析师在这些数据上运行批处理分析作业或实时查询,以获得投资信号,为投资者构建目标投资组合。考虑当前和目标投资组合以及投资信号后,生成适当的交易信号,再通过经纪人执行交易。

从前台到中后台,从客户获取到投资组合构建,我们看到越来越多客户正在利用生成式 AI 进行全流程价值链提升。生成式 AI 可在以下领域提高从业者生产效率:

  • 生成投资报告、市场观察报告、合规报告等
  • 智能研究助理,如通过综合市场数据和基金回报解释业绩表现,或通过审阅大量报告论文识别趋势
  • 文本摘要总结和后续研究
  • 构建可视化报表
  • 编写样板代码

传统上,查询数据库、转换和可视化数据需要数据工程师或数据科学家编写针对数据库和 API 的代码。他们需要提取和转换数据,以便可视化,用于投资组合构建、投资组合归因或历史模拟。但有了生成式 AI,非编码人员可使用自然语言与 AI 助手交互,AI 助手将自然语言提示转为代码并执行,生成所需输出。使用 Amazon Bedrock 的 Agents 功能,即使是非编码人员也可以轻松低代码实现复杂的功能。将大型语言模型(LLM)连接到自己的流程、系统和数据源,利用 LLM 的推理能力,自主创建编排计划、执行复杂任务,并通过调用正确的 API 完成用户请求。Amazon Bedrock 的 Agents 加速了生成式 AI 应用程序的交付,这些应用程序可以通过调用公司系统的 API 来管理和执行任务。Agents 扩展了 LLM,使其能够理解用户请求、将复杂任务分解为多个步骤、进行对话收集额外信息,并采取行动来完成请求。

在当今快节奏的金融市场中,投资者需要实时获取并分析大量信息,以做出明智的投资决策。传统的分析方式需要大量的代码工作,也对人员的技术代码能力有一定的要求。通过利用 Amazon Bedrock 的 Agents 功能,我们可以低代码构建 AI 驱动的股票分析助手,帮助投资者快速高效地分析股票。要构建这样一个AI股票分析助手,我们首先需要设置一个 Agent,让它能访问所需的数据源和 API,比如在我们的例子里面,包括股票新闻 API、分析师评级 API 和行业数据 API,当然你可以加上更多的工具和信息。我们需要确保 Agent 有权限从这些 API 安全获取相关数据。接下来,我们定义 Agent 的任务,也就是对特定股票进行全面分析并给出投资建议。我们只需用自然语言表述需求,比如”请分析亚马逊公司股票的当前状况,并提供投资建议”。一旦接收到请求,Agent 会首先理解并分解任务。它可能会先调用新闻 API 获取亚马逊的最新新闻,再调用分析师评级 API 获取外部分析师的评级,最后查询行业数据了解亚马逊所在行业的发展趋势。在汇总所有数据后,Agent 会运用大语言模型的推理能力,综合分析并形成对该股票的看法和投资建议。例如:“根据最新新闻,亚马逊将于下季度推出新的物流优化方案,有望进一步提高运营效率。分析师给予该股票“买入”的平均评级。电商行业整体保持两位数增长。考虑到这些因素,我们建议可适当买入亚马逊股票。”最终,Agent 会以自然语言向用户呈现分析结果和建议。用户还可以与 Agent 进行互动,询问更多细节或改变分析目标等,Agent 会相应调整分析路径。

通过这个例子,我们可以看到 Amazon Bedrock Agents 如何帮助我们低代码、高效地构建 AI 应用,利用大语言模型的推理和自然语言交互能力,完成涉及多个数据源和 API 的复杂分析任务。这极大简化了 AI 应用的开发流程,使金融行业的分析师和投资者能够快速验证创新想法,提高工作效率。

接下来我们展示,如何利用 Amazon Bedrock 低代码搭建自己的简单 AI 股票分析助手。

第一步,创建。我们在 Amazon Bedrock 控制台首先创建一个名为”stock-analyst”的 Agent,并给它写上简单的描述。stock-analyst 需要访问多个数据源才能完成复杂的分析任务,因此后续我们需要为它连接股票新闻 API、分析师评级 API 和行业数据 API,并确保 stock-analyst 能安全可靠地获取所需信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值