GenAI 做 Discord 舆情分析

目录

前言

关于 Discord

架构说明

LangChain Summarize

Discord.py

Discrod Bot 配置

方案部署

安装依赖

开始部署

创建 Glue Catalog DataBase

关键代码解析

信息采集阶段

语义分析阶段

文本总结阶段

Prompt 说明

端到端流程演示

安装依赖

配置环境变量

创建用于登录的 Demo 的用户和密码

Demo 演示

配置 Discord 信息,以及 Discord 数据抓取频度

运行完成的 Discord 洞察 Job 信息查询

总结结果展示


前言

关于 Discord

Discord 在游戏行业扮演着重要角色,作为一个专为游戏玩家设计的社交平台。它提供了实时语音、文字和视频通信功能,让玩家可以轻松组队、讨论策略和分享游戏体验。游戏开发商和发行商也利用 Discord 建立官方社区,与玩家互动并收集反馈。随着时间推移,Discord 不仅服务于游戏玩家,还扩展到教育和其他领域,成为一个多功能的社交平台。它的成功促使许多游戏厂商重视社区运营,将其视为长线运营的必备能力。通过在 Discord 上进行舆情分析,游戏公司可以及时捕捉玩家的声音,快速应对潜在危机,并利用数据驱动决策,从而提升游戏的整体运营效果和玩家满意度。

本文会带大家一起逐步搭建一套自动化分析 Discord 上玩家舆情的解决方案,通过该方案您可以制定执行周期,通过 discord.py 爬取玩家聊天分析其语义,并作出舆情判断。

架构说明

本架构中我们采用完全 serverless 的架构进行搭建,架构中几个重要的服务如下所示:

AWS Glue:亚马逊云科技(AWS)提供的一种完全托管的提取、转换和加载(ETL)服务,旨在简化数据集成任务。它可以自动推理数据格式,并根据源数据和目标数据存储构建 ETL 代码。

Amazon Bedrock:一项完全托管的服务,可提供多种高性能基础模型(FM),以及构建生成式人工智能应用程序所需的一系列广泛功能,通过符合安全性和隐私性的负责任人工智能简化开发成本。

Amazon Athena:是一种交互式查询服务,让您能够轻松使用标准 SQL 直接分析 Amazon Simple Storage Service(Amazon S3)中的数据。只需在 AWS Management Console 中执行几项操作,即可将 Athena 指向 Amazon S3 中存储的数据,并开始使用标准 SQL 运行临时查询,然后在几秒钟内获得结果。

LangChain Summarize

LangChain 提供了多种文本总结的方法,其中 refiner 是一种较为先进的迭代式总结技术。以下是对 LangChain 总结方法的介绍:

  • 基础总结:使用简单的提示模板和语言模型生成摘要。
  • Map-reduce:将长文本分割成小块,分别总结后再合并。适用于较长文档。
  • Stuff:将所有文本直接输入模型,适合短文本。
  • Refiner:这是一种迭代式的总结方法,特别适合处理长文档。其工作流程如下:
    1. 首先对文档的初始部分生成一个摘要。
    2. 然后将这个初始摘要与下一部分文本一起输入模型,生成更新的摘要。
    3. 重复这个过程,不断”提炼”摘要,直到处理完整个文档。

Refiner 方法的优势在于:

  • 可以处理非常长的文档,克服了模型输入长度限制。
  • 通过迭代提炼,保证了摘要的连贯性和全面性。
  • 能够捕捉文档中的关键信息,并在最终摘要中保留。

使用 refiner 方法时,可以通过调整每次迭代的文本长度、迭代次数等参数来优化性能,本文即采用 Refiner Chain 来实现 Discord 信息的总结功能。

Discord.py

Discord.py 是一个强大的 Python 库,专为开发 Discord 机器人而设计。它提供了与 Discord API 交互的简便方法,允许开发者创建自定义命令、事件监听器和自动化任务。

Discrod Bot 配置

创建Application,本文参考 https://discordpy.readthedocs.io/en/stable/discord.html

登陆至 https://discord.com/developers/applications,创建Application

添加 Bot 名称

创建完毕后,点击 Bot→Reset Token

配置 OAuth2 权限后加入到 Discord Channel

拷贝至浏览器,邀请 Bot 至相关频道就行了。

方案部署

整套解决方案使用 AWS CDK 进行部署,所以需要在本地具备以下环境。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值