Paper Note-MAD-GAN:基于生成对抗网络的时间序列多变量异常检测

原文标题:MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks

原文作者:Dan Li , Dacheng Chen , Lei Shi , Baihong Jin , Jonathan Goh , and See-Kiong Ng

原文来源:2019ICANN

文章目录

  • 摘要
  • 1 引言
  • 2 相关工作
  • 3 异常检测和生成对抗训练
    • 3.1.MAD-GAN架构
    • 3.2.基于GAN异常检测
  • 总结

 


摘要

        传感器和执行器的普及使现实世界中的信息物理系统(eg:智能建筑、工厂、发电厂、数据中心等)产生了大量的多元时间序列数据。丰富的传感器数据可以监控这些复杂系统的运行状态,有助于运维人员发现潜在的安全隐患并采取必要措施。目前,有监督机器学习方法由于缺乏标记数据无法充分利用大量数据,无监督机器学习方法也未充分利用系统中多个变量之间的时间相关性和其他相关性来检测异常。此文提出了一个基于生成对抗网络的时间序列多变量异常检测方法,以GAN框架为基础,使用LSTM来捕获时间上的依赖关系,利用GAN产生的生成器重建损失,判别器来判别损失。

1 引言

        随着IoT(Internet of Things)出现,网络传感器和执行器在CPS和其他系统(eg:自动驾驶汽车)中普遍使用,导致越来越多的系统和设备在网络上通信,及通过网络自动操作各种各样的任务成为可能。为了及时发现这些系统的异常,利用系统产生的多元时间序列数据进行异常检测,密切监测这些系统的入侵行为,以便采取行动调查和解决潜在问题显得十分重要。

        以统计过程控制方法(SPC)为代表的传统异常检测方法无法处理日益动态、复杂的现代物理信息系统产生的多元数据流。机器学习处理大量数据有很大优势,由于缺乏标记数据,无监督机器学习方法被广泛使用,但是在捕获多元时间序列中隐藏的内在非线性的相关性仍存在不足,这种检测也是不充分的。

        生成对抗网络(GAN)在图像处理任务中取得广泛成功,但是使用GAN框架生成连续值序列的研究还很少。不同与传统分类方法,此文中GAN训练的鉴别器以无监督方式从真实数据中检测假数据,通过借鉴“更新真实空间映射到某潜在空间来增强生成器和鉴别器,训练潜在空间理解GAN,并用于无监督的方式来学习能表示任意分布数据的丰富特征”,“在GAN检测策略下,从潜在空间重构测试样本”上述思路,此文提出了一个基于生成对抗网络的时间序列多变量异常检测方法(MAD-GAM),通过GAN训练的生成器和鉴别器,基于重建和鉴别损失来检测异常。

2 相关工作

由于缺少标签数据,异常检测大多基于无监督方法。基本分为四类:

1)基于线性模型方法(eg:PCA,PLS。优缺点:要求数据服从高斯分布,只对高度相关的数据有效)

2)  基于距离方法(eg:KNN,CBLOF。优缺点:在关于异常持续时间和异常数据的先验知识情况下表现更好)

3)基于概论和密度估计方法(eg:Angle-Based Outlier Detection方法,Feature Bagging方法。优缺点:未考虑时间步长的时间相关性,在处理多变量时间序列数据表现不足)

4)基于深度学习方法(eg:自动编码器AE,深度自编码高斯混合模型DAGMM,LSTM编码器-解码器。)

3 异常检测和生成对抗训练

3.1 MAD-GAN架构

代码如下(示例):

3.2 基于GAN异常检测

代码如下(示例):

总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

 

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值