一、二叉堆
- 二叉堆是一颗二叉树,不一定是满二叉树,但一定是完全二叉树,完全二叉树指的是允许有缺失的部分,但缺失节点的部分一定是右下侧。
- 最大堆:根节点的元素是最大的元素
- 最小堆:如果任意一个节点小于等于他的孩子节点
- 完全二叉树有其非常卓越的性质:对于任意一个父节点的序号n来说(这里n从0算),它的子节点的序号一定是2n+1,2n+2
二、堆排序
堆排序的基本思路:
堆排序的基本思路:
- 将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
- 将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
- 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
public static void sort(int []arr){
//1.构建小顶堆
buildMinDump(arr);
//2.调整堆结构+交换堆顶元素与末尾元素
for(int j=arr.length-1;j>0;j--){
swap(arr,0,j);//将堆顶元素与末尾元素进行交换
minAdjust(arr,0,j);//重新对堆进行调整
}
}
public void buildMinDump(int [] input) {
for(int index= input.length/2-1; index>=0;index--) {
minAdjust(input, index, input.length);
}
}
public void minAdjust(int [] input, int i, int length) {
int left = 2 * i +1;
int right = 2 * i +2;
int minIndex = i;
if(left < length && input[left] < input[minIndex]) {
minIndex = left;
}
if(right < length && input[right] < input[minIndex]) {
minIndex = right;
}
if(minIndex != i) {
swap(input, minIndex, i);
minAdjust(input, minIndex, length);
}
}
public void swap(int [] input, int i,int j) {
int tmp = input[i];
input[i] = input[j];
input[j] = tmp;
}
三、例子
1、大根堆的应用:数组中的第K个最大元素
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
说明:你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。
代码:
class Solution {
public int findKthLargest(int[] array, int k) {
buildHeap(array);
int length = array.length;
while (k > 1) {
swap(array, length - 1, 0);
length--;
maxAdjust(array, 0, length);
k--;
}
return array[0];
}
public void buildHeap(int[] array) {
for (int i = array.length / 2; i >= 0; i--) {
maxAdjust(array, i, array.length);
}
}
public void maxAdjust(int[] array, int i, int length) {
int maxIndex = i;
int l = 2 * i + 1;
int r = 2 * i + 2;
if (l < length && array[l] > array[maxIndex]) {
maxIndex = l;
}
if (r < length && array[r] > array[maxIndex]) {
maxIndex = r;
}
if (maxIndex != i) {
swap(array, maxIndex, i);
maxAdjust(array, maxIndex, length);
}
}
private void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
}
2、小根堆的应用:最小K个数
设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。
示例:
输入: arr = [1,3,5,7,2,4,6,8], k = 4
输出: [1,2,3,4]
提示:0 <= len(arr) <= 100000
0 <= k <= min(100000, len(arr))
代码:
class Solution {
public int[] smallestK(int[] array, int k) {
buildHeap(array);
int[] resArray = new int[k];
int length = array.length;
for (int i = 0; i < k; i++) {
resArray[i] = array[0];
swap(array, length - 1, 0);
length --;
smallestAdjust(array, 0, length);
// k--;
}
return resArray;
}
private void buildHeap(int[] array) {
for (int i = array.length; i >= 0; i--) {
smallestAdjust(array, i, array.length);
}
}
private void smallestAdjust(int[] array, int i, int length) {
int smallestIndex = i;
int left = 2 * i + 1;
int right = 2 * i + 2;
if (left < length && array[left] < array[smallestIndex]) {
smallestIndex = left;
}
if (right < length && array[right] < array[smallestIndex]) {
smallestIndex = right;
}
if (smallestIndex != i) {
swap(array, smallestIndex, i);
smallestAdjust(array, smallestIndex, length);
}
}
private void swap(int[] array, int i, int j) {
int tmp = array[i];
array[i] = array[j];
array[j] = tmp;
}
}
解法二:
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
if(input == null || input.length ==0 || k > input.length || k <=0) {
return new ArrayList<Integer>();
}
PriorityQueue<Integer> queue = new PriorityQueue<Integer>((num1, num2) -> num2-num1);
for(int i=0; i< input.length; i++) {
if(i < k) {
queue.offer(input[i]);
continue;
}
if(queue.peek() > input[i]) {
queue.poll();
queue.offer(input[i]);
}
}
ArrayList<Integer> resList = new ArrayList<Integer>();
for(int i=0; i< k; i++) {
resList.add(queue.poll());
}
return resList;
}
关于面试哪些事,欢迎关注公众号“程序员ZZ的源码”