POJ - Matrix Power Series 【矩阵快速幂+二分求和】

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3


这题利用矩阵快速幂 + 二分求和,题目要求是Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

⑴  这里,假设k = 6,可以得到 S = a + a^2 + a^3 + a^4 + a^5 + a^6 --->  S = (a + a^2 + a^3) + a^3(a^1 + a^2 + a^3) 

这里用A = (a + a^2 + a^3) ,那么,可以得到 S = A + a^3*A ,然后,然后,继续将A二分下去,直到A = a,利用递归求解就可以得到结果。

⑵ 这里还有一点要注意,当K的值为奇数或者偶数的时候,要分下面两种情况:

     ①  当k为偶数,假设k = 2n,S = a + a^2 + a^3+...+ a^n + (a + a^2 + a^3 +...+ a^n)a^n

     ②  当k为奇数,假设k = 2n+1,S = a + a^2 + a^3+...+ a^n + (a + a^2 + a^3 +...+ a^n)a^n + a^2n+1

下面是具体的AC代码:

#include <iostream>
#include <cstring>

using namespace std;
int size,mod,n; // size是n*n矩阵的大小,mod是取模大小,n是次数
class Matrix{
public:
	int data[30][30];
	Matrix();
	Matrix operator *(const Matrix rig);
	Matrix operator +(const Matrix rig);
	void showMatrix();  // 输出矩阵
	void unitMatrix();  // 单位矩阵
};
Matrix::Matrix()   // 矩阵的构造函数
{
	memset(data,0,sizeof(data));
}
Matrix Matrix::operator *(const Matrix rig)
{
	Matrix ans;
	for(int i = 0; i < size; i++)
	{
		for(int j = 0; j < size; j++)
		{
			for(int k = 0; k < size; k++)
			{
				ans.data[i][j] += data[i][k] * rig.data[k][j] % mod;
				ans.data[i][j] %= mod;
			}
		}
	}
	return ans;
}
Matrix Matrix::operator +(const Matrix rig)
{
	Matrix ans;
	for(int i = 0; i < size; i++)
	{
		for(int j = 0; j < size; j++)
		{
			ans.data[i][j] = (data[i][j] + rig.data[i][j]) % mod;
		}
	}
	return ans;
}
void Matrix::showMatrix()
{
	for(int i = 0; i < size; i++)
	{
		cout << data[i][0] % mod;
		for(int j = 1; j < size; j++)
		{
			cout << " " << data[i][j] % mod;
		}
		cout << '\n';
	}
}
void Matrix::unitMatrix()
{
	for(int i = 0; i < size; i++)
	{
		data[i][i] = 1;
	}
}

Matrix powMatrix(Matrix rig,int t)
{
	Matrix ans;
	ans.unitMatrix();
	while(t)
	{
		if(t & 1) ans = ans * rig;
		rig = rig * rig;
		t >>= 1;
	}
	return ans;
}
Matrix solve(Matrix rig, int t)
{
	Matrix tmp;
	tmp.unitMatrix();
	if(t == 1)
	{
		return rig;
	}
	else
	{
		if(t & 1)     // 相当于 A*a^t+A + a^(2t+1) ---> A*(a^t+1) + a^(2t+1)
			return (powMatrix(rig,t>>1)+ tmp)*solve(rig,t>>1) + powMatrix(rig,t);
		else          // 相当于 A*a^t+A ---> A*(a^t+1)
			return (powMatrix(rig,t>>1)+tmp)*solve(rig,t>>1);
	}
}
int main(int argc, char const *argv[])
{
	while(cin >> size >> n >> mod)
	{
		int a[size][size];
		Matrix res,s;
		for(int i = 0; i < size; i++)
		{
			for(int j = 0; j < size; j++)
			{
				cin >> s.data[i][j];
			}
		}
		res = solve(s,n);
		res.showMatrix();
	}
	return 0;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧农业是一种结合了现代信息技术,包括物联网、大数据、云计算等,对农业生产过程进行智能化管理和监控的新模式。它通过各种传感器和设备采集农业生产中的关键数据,如大气、土壤和水质参数,以及生物生长状态等,实现远程诊断和精准调控。智慧农业的核心价值在于提高农业生产效率,保障食品安全,实现资源的可持续利用,并为农业产业的转型升级提供支持。 智慧农业的实现依赖于多个子系统,包括但不限于设施蔬菜精细化种植管理系统、农业技术资料库、数据采集系统、防伪防串货系统、食品安全与质量追溯系统、应急追溯系统、灾情疫情防控系统、农业工作管理系统、远程诊断系统、监控中心、环境监测系统、智能环境控制系统等。这些系统共同构成了一个综合的信息管理和服务平台,使得农业生产者能够基于数据做出更加科学的决策。 数据采集是智慧农业的基础。通过手工录入、传感器自动采集、移动端录入、条码/RFID扫描录入、拍照录入以及GPS和遥感技术等多种方式,智慧农业系统能够全面收集农业生产过程中的各种数据。这些数据不仅包括环境参数,还涵盖了生长状态、加工保存、检验检疫等环节,为农业生产提供了全面的数据支持。 智慧农业的应用前景广阔,它不仅能够提升农业生产的管理水平,还能够通过各种应用系统,如库房管理、无公害监控、物资管理、成本控制等,为农业生产者提供全面的服务。此外,智慧农业还能够支持政府监管,通过发病报告、投入品报告、死亡报告等,加强农业产品的安全管理和质量控制。 面对智慧农业的建设和发展,存在一些挑战,如投资成本高、生产过程标准化难度大、数据采集和监测的技术难题等。为了克服这些挑战,需要政府、企业和相关机构的共同努力,通过政策支持、技术创新和教育培训等手段,推动智慧农业的健康发展。智慧农业的建设需要明确建设目的,选择合适的系统模块,并制定合理的设备布署方案,以实现农业生产的智能化、精准化和高效化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值