HDU 5406【费用流 或 dp+树状数组】

拆点,容量为1表示每个点只能用一次,费用为-1表示经过了几个点
建立超级源向源点连接容量为2的边,表示两个上升序列。

spfa用了栈就可以过了。

//      whn6325689
//      Mr.Phoebe
//      http://blog.csdn.net/u013007900
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
#include <functional>
#include <numeric>
#pragma comment(linker, "/STACK:1024000000,1024000000")


using namespace std;

#define eps 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LLINF 1LL<<62
#define speed std::ios::sync_with_stdio(false);

typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<ll, ll> pll;
typedef complex<ld> point;
typedef pair<int, int> pii;
typedef pair<pii, int> piii;
typedef vector<int> vi;

#define CLR(x,y) memset(x,y,sizeof(x))
#define CPY(x,y) memcpy(x,y,sizeof(x))
#define clr(a,x,size) memset(a,x,sizeof(a[0])*(size))
#define cpy(a,x,size) memcpy(a,x,sizeof(a[0])*(size))
#define debug(a) cout << #a" = " << (a) << endl;
#define debugarry(a, n) for (int i = 0; i < (n); i++) { cout << #a"[" << i << "] = " << (a)[i] << endl; }

#define mp(x,y) make_pair(x,y)
#define pb(x) push_back(x)
#define lowbit(x) (x&(-x))

#define MID(x,y) (x+((y-x)>>1))
#define ls (idx<<1)
#define rs (idx<<1|1)
#define lson ls,l,mid
#define rson rs,mid+1,r

template<class T>
inline bool read(T &n)
{
    T x = 0, tmp = 1;
    char c = getchar();
    while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
    if(c == EOF) return false;
    if(c == '-') c = getchar(), tmp = -1;
    while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();
    n = x*tmp;
    return true;
}
template <class T>
inline void write(T n)
{
    if(n < 0)
    {
        putchar('-');
        n = -n;
    }
    int len = 0,data[20];
    while(n)
    {
        data[len++] = n%10;
        n /= 10;
    }
    if(!len) data[len++] = 0;
    while(len--) putchar(data[len]+48);
}
//-----------------------------------

const int N=2005,M=2000005;
struct Graph
{
    struct node
    {
        int v,next,w,flow;
        node(){};
        node(int a,int b,int c,int d){
            next=a;v=b;w=c;flow=d;
        }
    }E[2*M];
    int head[N],pre[N],dis[N];
    int beg,end,flow,cost;
    bool h[N];
    int path[N];
    int NE,NV;
    void resize(int n)
    {
        this->NV=n;
    }
    void init(int n)
    {
        NE=0;
        NV=n;
        memset(head,-1,sizeof(int)*(n+10));
    }
    void insert(int u,int v,int flow,int w)
    {
        E[NE]=node(head[u],v,w,flow);
        head[u]=NE++;
        E[NE]=node(head[v],u,-w,0);
        head[v]=NE++;
    }
    bool update(int u,int v,int w)
    {
        if(dis[u]+w<dis[v])
        {
            dis[v]=dis[u]+w;
            return true;
        }
        return false;
    }
    int st[N];
    bool spfa()
    {
        CLR(pre,-1);
        CLR(h,0);
        for(int i=0;i<=NV;i++)
            dis[i]=INF;
        dis[beg]=0;
        int top=0;
        st[top++]=beg;
        while(top)
        {
            top--;
            int u=st[top];
            h[u]=0;
            for(int i=head[u];i!=-1;i=E[i].next)
            {
                int v=E[i].v;
                if(E[i].flow>0&&update(u,v,E[i].w))
                {
                    pre[v]=u;
                    path[v]=i;
                    if(!h[v])
                    {
                        h[v]=1;
                        st[top++]=v;
                    }
                }
            }
        }
        if(pre[end]==-1)
            return false;
        return true;
    }
    int mincost_maxflow(int s,int t)
    {
        this->beg=s;this->end=t;
        flow=0,cost=0;
        while(spfa())
        {
            int Min=INT_MAX;
            for(int i=end;i!=beg;i=pre[i])
                if(Min>E[path[i]].flow)
                    Min=E[path[i]].flow;
            for(int i=end;i!=beg;i=pre[i])
            {
                E[path[i]].flow-=Min;
                E[path[i]^1].flow+=Min;
            }
            flow+=Min;
            cost+=dis[end];
        }
        return cost;
    }
}g;

struct apple
{
    int h,v;
}a[N];

bool cmp(apple a,apple b)
{
    if(a.h==b.h) return a.v<b.v;
    return a.h>b.h;
}
int n,i,j,s,t,ss;
const int MAXN=3000;

int main()
{
    int T;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d",&n);
        for(i=1;i<=n;i++)
            scanf("%d%d",&a[i].h,&a[i].v);
        sort(a+1,a+1+n,cmp);
        s=0;t=2*n+2;ss=2*n+1;
        g.init(2*n+3);

        g.insert(s,ss,2,0);
        for(i=1;i<=n;i++)
        {
            g.insert(ss,i,1,0);
            g.insert(i,n+i,1,-1);
            g.insert(n+i,t,1,0);
        }
        for(i=1;i<=n;i++)
            for(j=i+1;j<=n;j++)
                if(a[i].v<=a[j].v)
                    g.insert(n+i,j,1,0);

        int ans=g.mincost_maxflow(s,t);
        printf("%d\n",-ans);
    }
    return 0;
}

建图图上进行dp,dp[i][j]表示表示两个人分别在 第i个点和第j个点时候能吃的最多苹果树,可以限制下 i<=j减少有效状态,还有就是一些无用的边不需要构造出来 ,比如说

a->b b->c 那么 就不需要连a->c的边,这里边表示的是 吃完a可以吃b。然后就图上跑一遍dp就行了。注意事项见代码。

#include <queue>
#include <limits>
#include <vector>
#include <cstdio>
#include <algorithm>
using namespace std;
#define INF 1000000050
#define MAXN 1111
vector<int> e[MAXN];
int in[MAXN];
int q[MAXN];
int dis[MAXN];
int d[MAXN][MAXN];
int id[MAXN];
struct g {
    int h, d;
} s[MAXN];
bool cmp(g a, g b) {
    if (a.h == b.h)
        return a.d < b.d;
    return a.h > b.h;
}

int main() {
    int tt;
    scanf("%d", &tt);
    while (tt--) {
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; ++i)
            scanf("%d%d", &s[i].h, &s[i].d);
        sort(s + 1, s + 1 + n, cmp);
        for (int i = 0; i <= n + 1; ++i) {
            dis[i] = in[i] = 0;
            e[i].clear();
        }

        //进行拓扑排序,根据拓扑序进行dp
        for (int i = 1; i <= n; ++i) {
            e[0].push_back(i);
            in[i]++;
            for (int j = i + 1; j <= n; ++j) {
                if (s[i].d <= s[j].d) {
                    e[i].push_back(j);
                    in[j]++;
                }
            }
            e[i].push_back(n + 1);
            in[n + 1]++;
        }
        int tail = 0;
        q[tail++] = 0;
        dis[0] = 0;
        id[0] = 0;
        for (int i = 0; i < tail; ++i) {
            int u = q[i];
            id[u] = i;
            for (int j = 0; j < e[u].size(); ++j) {
                int v = e[u][j];
                if (dis[v] < dis[u] + 1)
                    dis[v] = dis[u] + 1;
                in[v]--;
                if (in[v] == 0)
                    q[tail++] = v;
            }
        }

        for (int i = 0; i <= n + 1; ++i)
            for (int j = 0; j <= n + 1; ++j) {
                d[i][j] = -INF;
            }
        for (int i = 0; i <= n + 1; ++i)
            e[i].clear();
        s[n + 1].d = INF;
        for (int i = n; i >= 0; --i) {//加边的时候注意不要加一些无用的边
            int mm = INF + 50;
            for (int j = i + 1; j <= n + 1; ++j) {
                if (mm <= s[j].d)
                    continue;
                if (s[i].d <= s[j].d) {
                    e[i].push_back(j);
                    mm = min(s[j].d, mm);
                }
            }
        }

        d[0][0] = 0;
        for (int i = 0; i <= n + 1; ++i) {
            int u = q[i];
            for (int j = i; j <= n + 1; ++j) {
                int v = q[j];
                if (d[i][j] < 0)
                    continue;
                for (int k = 0; k < e[u].size(); ++k) {//每次只从编号小的转移
                    int x = id[e[u][k]];
                    if (x == j) {
                        d[x][j] = max(d[x][j], d[i][j]);
                    }
                    if (x < j) {
                        d[x][j] = max(d[x][j], d[i][j] + 1);
                    }
                    if (x > j) {
                        d[j][x] = max(d[j][x], d[i][j] + 1);
                    }
                }

            }
        }

        printf("%d\n", d[n + 1][n + 1] - 1);
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值