题目描述
假设利用两个线性表LA和LB分别表示两个集合A和B(即:线性表中的数据元素即为集合中的成员),现要求一个新的集合A=A∪B。这就要求对线性表做如下操作:扩大线性表LA,将存在于线性表LB中而不存在于线性表LA中的数据元素插入到线性表LA中去。只要从线性表LB中依次取得每个元素,并依值在线性表LA中进行查访,若不存在,则插入之。上述操作过程可用下列算法描述之。
输入
有多组测试数据,每组测试数据占两行。第一行是集合A,第一个整数m(0<m<=100)代表集合A起始有m个元素,后面有m个整数,代表A中的元素。第二行是集合B,第一个整数n(0<n<=100)代表集合B起始有n个元素,后面有n个整数,代表B中的元素。每行中整数之间用一个空格隔开。
输出
每组测试数据输出n+2行:前两行分别输出集合A、集合B中的数据,后面n行是每次从B中取出元素插入到A尾部后的集合A。每行整数之间用一个空格隔开,每组测试数据之间用一行空行隔开。
样例输入
5 1 5 2 6 3
3 1 7 9
1 3
2 2 7
4 2 5 1 4
4 1 2 4 5
样例输出
1 5 2 6 3
1 7 9
1 5 2 6 3
1 5 2 6 3 7
1 5 2 6 3 7 9
3
2 7
3 2
3 2 7
2 5 1 4
1 2 4 5
2 5 1 4
2 5 1 4
2 5 1 4
2 5 1 4
提示
提示:
1、使用数组时,给集合 A 分配的空间不小于200。因为将 B 中的元素添加到 A 中时,可能会超过 100 了。
2、利用 scanf("%d",&m) != EOF 来判断是否还有输入数据。
3、一个细节问题就是题目要求输出的格式是每行中元素之间用一个空格隔开,每组输出间用一个空行隔开。也就是说4个元素间只有3个空格,2组输出间只有1个空行。处理方法都一样。两种方法:一是除了第一个元素,后面的每个元素之前输出个空格;二是除了最后一个元素,前面的每个元素之后都输出一个空格。我往往采用第一种方式,因为许多编程语言中的数组都是从0开始的,而0正是判断语句中的“假”(当然Java中不是这样的)。
#include
#include
/* malloc()等 */
#include
/* EOF(=^Z或F6),NULL */
#include
/* atoi() */
#include
/* floor(),ceil(),abs() */ #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define LIST_INIT_SIZE 10 /* 线性表存储空间的初始分配量 */ #define LISTINCREMENT 2 /* 线性表存储空间的分配增量 */ typedef int ElemType; typedef int Status; typedef int Boolean; typedef struct { ElemType *elem; /* 存储空间基址 */ int length; /* 当前长度 */ int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */ } SqList; Status InitList(SqList *L) /* 算法2.3 */ { /* 操作结果:构造一个空的顺序线性表 */ (*L).elem = (ElemType*)malloc(LIST_INIT_SIZE * sizeof(ElemType)); if (!(*L).elem) exit(OVERFLOW); /* 存储分配失败 */ (*L).length = 0; /* 空表长度为0 */ (*L).listsize = LIST_INIT_SIZE; /* 初始存储容量 */ return OK; } Status ListInsert(SqList *L, int i, ElemType e) /* 算法2.4 */ { /* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)+1 */ /* 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1 */ ElemType *newbase, *q, *p; if (i<1 || i>(*L).length + 1) /* i值不合法 */ return ERROR; if ((*L).length >= (*L).listsize) /* 当前存储空间已满,增加分配 */ { newbase = (ElemType *)realloc((*L).elem, ((*L).listsize + LISTINCREMENT) * sizeof(ElemType)); if (!newbase) exit(OVERFLOW); /* 存储分配失败 */ (*L).elem = newbase; /* 新基址 */ (*L).listsize += LISTINCREMENT; /* 增加存储容量 */ } q = (*L).elem + i - 1; /* q为插入位置 */ for (p = (*L).elem + (*L).length - 1; p >= q; --p) /* 插入位置及之后的元素右移 */ *(p + 1) = *p; *q = e; /* 插入e */ ++(*L).length; /* 表长增1 */ return OK; } Status ListTraverse(SqList L, void(*vi)(ElemType*)) { /* 初始条件:顺序线性表L已存在 */ /* 操作结果:依次对L的每个数据元素调用函数vi()。一旦vi()失败,则操作失败 */ /* vi()的形参加'&',表明可通过调用vi()改变元素的值 */ ElemType *p; int i; p = L.elem; for (i = 1; i <= L.length; i++) { if (i != 1) printf(" "); vi(p++); } printf("\n"); return OK; } int ListLength(SqList L) { /* 初始条件:顺序线性表L已存在。操作结果:返回L中数据元素个数 */ return L.length; } Status GetElem(SqList L, int i, ElemType *e) { /* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */ /* 操作结果:用e返回L中第i个数据元素的值 */ if (i<1 || i>L.length) exit(ERROR); *e = *(L.elem + i - 1); return OK; } int LocateElem(SqList L, ElemType e, Status(*compare)(ElemType, ElemType)) { /* 初始条件:顺序线性表L已存在,compare()是数据元素判定函数(满足为1,否则为0) */ /* 操作结果:返回L中第1个与e满足关系compare()的数据元素的位序。 */ /* 若这样的数据元素不存在,则返回值为0。算法2.6 */ ElemType *p; int i = 1; /* i的初值为第1个元素的位序 */ p = L.elem; /* p的初值为第1个元素的存储位置 */ while (i <= L.length && !compare(*p++, e)) ++i; if (i <= L.length) return i; else return 0; } Status equal(ElemType c1, ElemType c2) { /* 判断是否相等的函数,Union()用到 */ if (c1 == c2) return TRUE; else return FALSE; } void print(ElemType *c) { printf("%d", *c); } void Union(SqList *La, SqList Lb) /* 算法2.1 */ { /* 将所有在线性表Lb中但不在La中的数据元素插入到La中 */ ElemType e; int La_len, Lb_len; int i; La_len = ListLength(*La); /* 求线性表的长度 */ Lb_len = ListLength(Lb); for (i = 1; i <= Lb_len; i++) { GetElem(Lb, i, &e); /* 取Lb中第i个数据元素赋给e */ if (!LocateElem(*La, e, equal)) /* La中不存在和e相同的元素,则插入之 */ ListInsert(La, ++La_len, e); ListTraverse(*La, print); } } int main() { int n, m, a[105], b[105], cas = 0; while (~scanf("%d", &n)) { int j; if (cas++) printf("\n"); for (j = 0; j