深度学习框架
文章平均质量分 62
J_Xiong0117
一枚终生学习的算法工程师
展开
-
动手学深度学习PyTorch(六):卷积神经网络
卷积神经网络原创 2022-07-20 18:59:16 · 1449 阅读 · 0 评论 -
动手学深度学习PyTorch(五):深度学习计算
pytorch深度学习计算原创 2022-07-19 17:08:53 · 562 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(十)】——Pytorch高阶API
1)线性回归模型import numpy as np import pandas as pdfrom matplotlib import pyplot as plt import torchfrom torch import nnimport torch.nn.functional as Ffrom torch.utils.data import Dataset,DataLoader,TensorDataset#样本数量n = 400# 生成测试用数据集X = 10*torch.r原创 2022-03-11 16:44:14 · 580 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(九)】——Pytorch中阶API
Pytorch的中阶API主要包括:模型层损失函数优化器数据管道1)线性回归模型import numpy as npimport pandas as pdfrom matplotlib import pyplot as pltimport torchfrom torch import nnimport torch.nn.functional as Ffrom torch.utils.data import Dataset,DataLoader,TensorDataset%ma原创 2022-03-11 15:34:11 · 163 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(八)】——Pytorch低阶API
Pytorch低阶API主要包括:张量操作计算图自动微分1)线性回归模型import numpy as npimport pandas as pdfrom matplotlib import pyplot as pltimport torchfrom torch import nn# 样本数n= 400# 生成测试用数据X = 10*torch.rand([n,2])-5.0 #torch.rand是均匀分布w0 = torch.tensor([[2.0],[-3.0]]原创 2022-03-11 14:00:22 · 167 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(七)】——Pytorch动态计算图
1)动态计算图简介Pytorch的计算图由节点和边组成,节点表示张量或者Function,边表示张量和Function之间的依赖关系。Pytorch中的计算图是动态图。这里的动态主要有两重含义:第一层含义是:计算图的正向传播是立即执行的。无需等待完整的计算图创建完毕,每条语句都会在计算图中动态添加节点和边,并立即执行正向传播得到计算结果。第二层含义是:计算图在反向传播后立即销毁。下次调用需要重新构建计算图。如果在程序中使用了backward方法执行了反向传播,或者利用torch.autograd.g原创 2022-03-09 18:39:38 · 4919 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(六)】——Pytorch自动微分机制
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。而深度学习框架可以帮助我们自动地完成这种求梯度运算。Pytorch一般通过反向传播 backward 方法 实现这种求梯度计算。该方法求得的梯度将存在对应自变量张量的grad属性下。除此之外,也能够调用torch.autograd.grad 函数来实现求梯度计算。这就是Pytorch的自动微分机制。1)利用bachward方法求导数backward 方法通常在一个标量张量上调用,该方法求得的梯度将存放在对应自变原创 2022-03-09 15:34:56 · 328 阅读 · 1 评论 -
深度学习框架拾遗:【Pytorch(五)】——Pytorch张量的数据结构
Pytorch的基本数据结构是张量Tensor。张量即多维数组。Pytorch的张量和numpy中的array很类似。1)张量的数据类型张量的数据类型和numpy.array基本一一对应(但是不支持str类型),包括:torch.float64(torch.double)torch.float32(torch.float)torch.float16torch.int64(torch.long)torch.int32(torch.int)torch.int16torch.int8torc原创 2022-03-08 18:05:59 · 386 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(四)】——Pytorch文本数据建模流程
Step 1.数据准备这里会用到torchtext包,常见API如下:torchtext.data.Example : 用来表示一个样本,数据和标签torchtext.vocab.Vocab: 词汇表,可以导入一些预训练词向量torchtext.data.Datasets: 数据集类,__getitem__返回 Example实例, torchtext.data.TabularDataset是其子类。torchtext.data.Field : 用来定义字段的处理方法(文本字段,标签字段)创建原创 2022-03-08 13:47:41 · 2320 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(三)】——Pytorch结构化数据建模流程
import osimport datetimeimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport torch from torch import nnfrom torch.utils.data import Dataset,DataLoader,TensorDataset## 打印时间def printbar(): nowtime = datetime.datetime.now()原创 2022-03-07 13:59:46 · 1281 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(二)】——Pytorch的层次结构
Pytorch的层次结构从低到高可以分成如下五层。【硬件层】:Pytorch支持CPU、GPU加入计算资源池。【内核层】:C++实现的内核。【低阶API】:为Python实现的操作符,提供了封装C++内核的低级API指令,主要包括:• 张量结构操作:张量创建,索引切片,维度变换,合并分割• 张量数学运算:标量运算,向量运算,矩阵运算,广播机制• 动态计算图:Funciton,反向传播【中阶API】:为Python实现的模型组件,对低级API进行了函数封装,主要包括:• 模型层• 损原创 2022-03-04 13:35:10 · 515 阅读 · 0 评论 -
深度学习框架拾遗:【Pytorch(一)】——Pytorch的核心概念
Pytorch是一个基于Python的机器学习库。它广泛应用于计算机视觉,自然语言处理等深度学习领域。是目前和TensorFlow分庭抗礼的深度学习框架,在学术圈颇受欢迎。它主要提供了以下两种核心功能:1.支持GPU加速的张量计算。2.方便优化模型的自动微分机制。Pytorch的主要优点:• 简洁易懂:Pytorch的API设计的相当简洁一致。基本上就是tensor, autograd, nn三级封装。学习起来非常容易。有一个这样的段子,说TensorFlow的设计哲学是 Make it com.原创 2022-03-04 13:32:14 · 766 阅读 · 0 评论