深度学习框架拾遗:【Pytorch(八)】——Pytorch低阶API

该博客介绍了如何使用PyTorch的低阶API构建线性回归和深度神经网络(DNN)二分类模型。首先,展示了线性回归模型的实现,包括数据生成、数据管道、模型定义、训练过程和结果可视化。接着,通过DNN模型处理二分类问题,同样涵盖了数据准备、模型构建、训练过程和预测结果的可视化。整个过程详细展示了PyTorch中张量操作、计算图和自动微分等核心概念。
摘要由CSDN通过智能技术生成

Pytorch低阶API主要包括:

  • 张量操作
  • 计算图
  • 自动微分
1)线性回归模型
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import torch
from torch import nn

# 样本数
n= 400

# 生成测试用数据
X = 10*torch.rand([n,2])-5.0 #torch.rand是均匀分布
w0 = torch.tensor([[2.0],[-3.0]])
b0 = torch.tensor([[10.0]])
Y = X@w0 + b0 + torch.normal( 0.0,2.0,size = [n,1])  # @表示矩阵乘法,增加正态扰动

# 数据可视化

%matplotlib inline
%config InlineBackend.figure_format = 'svg'

plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0].numpy(),Y[:,0].numpy(), c = "b",label = "samples")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)

ax2 = plt.subplot(122)
ax2.scatter(X[:,1].numpy(),Y[:,0].numpy(), c = "g",label = "samples")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()

在这里插入图片描述

# 构建数据管道迭代器
def data_iter(features, labels, batch_size=8):
    num_examples = len(features)
    indices = list(range(num_examples))
    np.random.shuffle(indices)  #样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        indexs = torch.LongTensor(indices[i: min(i + batch_size, num_examples)])
        yield  features.index_select(0, indexs), labels.index_select(0, indexs)
        
# 测试数据管道效果   
batch_size = 8
(features,labels) = next(data_iter(X,Y,batch_size))
print(features)
print(labels)

在这里插入图片描述

# 定义模型
class LinearRegression: 
    
    def __init__(self):
        self.w = torch.randn_like(w0,requires_grad=True)
        self.b = torch.zeros_like(b0,requires_grad=True)
        
    #正向传播
    def forward(self,x): 
        return x@self.w + self.b

    # 损失函数
    def loss_func(self,y_pred,y_true):  
        return torch.mean((y_pred - y_true)**2/2)

model = LinearRegression()

# 训练模型
def train_step(model,features,labels):
    predictions = model.forward(features)
    loss = model.loss_func(predictions,labels)
    
    # 反向传播求梯度
    loss.backward()
    
    # 使用torch.no_grad()避免梯度记录,也可以通过操作 model.w.data 实现避免梯度记录
    with torch.no_grad():
        # 梯度下降法更新参数
        model.w -= 0.001*model.w.grad
        model.w -= 0.001*model.w.grad
        
        # 梯度清零
        model.w.grad.zero_()
        model.b.grad.zero_()
        
    return loss

batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))

def train_model(model,epochs):
    for epoch in range(1,epochs + 1):
        for features,labels in data_iter(X,Y,10):
            loss = train_step(model,features,labels)
            
        if epoch % 200==0:
            printbar()
            print("epoch = ",epoch,"loss = ",loss.item())
            print("model.w = ",model.w.data)
            print("model.b = ",model.b.data)

train_model(model,epochs=1000)

在这里插入图片描述

# 结果可视化
plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0].numpy(),Y[:,0].numpy(), c = "b",label = "samples")
ax1.plot(X[:,0].numpy(),(model.w[0].data*X[:,0]+model.b[0].data).numpy(),"-r",linewidth = 5.0,label = "model")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)


ax2 = plt.subplot(122)
ax2.scatter(X[:,1].numpy(),Y[:,0].numpy(), c = "g",label = "samples")
ax2.plot(X[:,1].numpy(),(model.w[1].data*X[:,1]+model.b[0].data).numpy(),"-r",linewidth = 5.0,label = "model")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)

plt.show()

在这里插入图片描述

2)DNN二分类模型

# 准备数据
import pandas as pd 
from matplotlib import pyplot as plt
import torch
from torch import nn
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

#正负样本数量
n_positive,n_negative = 2000,2000

#生成正样本, 小圆环分布
r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1]) 
theta_p = 2*np.pi*torch.rand([n_positive,1])
Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1)
Yp = torch.ones_like(r_p)

#生成负样本, 大圆环分布
r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1]) 
theta_n = 2*np.pi*torch.rand([n_negative,1])
Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1)
Yn = torch.zeros_like(r_n)

#汇总样本
X = torch.cat([Xp,Xn],axis = 0)
Y = torch.cat([Yp,Yn],axis = 0)


#可视化
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
plt.legend(["positive","negative"])

在这里插入图片描述

# 构建数据管道迭代器
def data_iter(features,labels,batch_size=8):
    num_examples = len(features)
    indices = list(range(num_examples))
    np.random.shuffle(indices)
    for i in range(0,num_examples,batch_size):
        indexs = torch.LongTensor(indices[i:min(i+batch_size,num_examples)])
        yield features.index_select(0,indexs),labels.index_select(0,indexs)

# 定义模型
class DNNModel(nn.Module):
    def __init__(self):
        super(DNNModel,self).__init__()
        self.w1 = nn.Parameter(torch.randn(2,4))
        self.b1 = nn.Parameter(torch.zeros(1,4))
        self.w2 = nn.Parameter(torch.randn(4,8))
        self.b2 = nn.Parameter(torch.zeros(1,8))
        self.w3 = nn.Parameter(torch.randn(8,1))
        self.b3 = nn.Parameter(torch.zeros(1,1))        
        
    # 正向传播
    def forward(self,x):
        x = torch.relu(x@self.w1 + self.b1)
        x = torch.relu(x@self.w2 + self.b2)
        y = torch.sigmoid(x@self.w3 + self.b3)
        return y
    
    # 损失函数(二元交叉熵)
    def loss_func(self,y_pred,y_true):
        #将预测值限制在1e-7以上, 1- (1e-7)以下,避免log(0)错误
        eps = 1e-7
        y_pred = torch.clamp(y_pred,eps,1.0-eps)
        bce = -y_true*torch.log(y_pred) - (1-y_true)*torch.log(1-y_pred)
        return torch.mean(bce)
    
    # 评估指标(准确率)
    def metric_func(self,y_pred,y_true):
        y_pred = torch.where(y_pred>0.5,torch.ones_like(y_pred,dtype=torch.float32),
                             torch.zeros_like(y_pred,dtype=torch.float32))
        acc = torch.mean(1-torch.abs(y_true-y_pred))
        return acc

model = DNNModel()

# 训练模型
def train_step(model,features,labels):
    # 正向传播求损失
    predictions = model.forward(features)
    loss = model.loss_func(predictions,labels)
    metric = model.metric_func(predictions,labels)
    
    # 反向传播求梯度
    loss.backward()
    
    # 梯度下降法更新参数
    for param in model.parameters():
        #注意是对param.data进行重新赋值,避免此处操作引起梯度记录
        param.data -=  0.01*param.grad.data
    # 梯度消零
    model.zero_grad()
    
    return loss.item(),metric.item()

def train_model(model,epochs):
    for epoch in range(1,epochs+1):
        loss_list,metric_list = [],[]
        for features,labels in data_iter(X,Y,20):
            lossi,metrici = train_step(model,features,labels)
            loss_list.append(lossi)
            metric_list.append(metrici)
        loss = np.mean(loss_list)
        metric = np.mean(metric_list)
        
        if epoch % 100 == 0:
            printbar()
            print("epoch = ",epoch,"loss = ",loss,"metric = ",metric)

train_model(model,epochs=1000)

在这里插入图片描述

# 结果可视化
fig,(ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize=(12,5))
ax1.scatter(Xp[:,0],Xp[:,1],c="r")
ax1.scatter(Xn[:,0],Xn[:,1],c="g")
ax1.legend(["positive","negative"])
ax1.set_title("y_true")

Xp_pred = X[torch.squeeze(model.forward(X)>=0.5)]
Xn_pred = X[torch.squeeze(model.forward(X)<0.5)]

ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r")
ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g")
ax2.legend(["positive","negative"]);
ax2.set_title("y_pred")

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值