C# Parallel.For 的使用

Parallel.For是微软提供的一个简单的并行计算的方法,这篇文章主要有两个目的

其一,介绍一下Parallel.For的使用

其二,和串行进行比较

1.现在来看看不访问相同资源时,Parallel.For和串行的效率如何,以下是代码

using System;
using System.Threading.Tasks;

namespace AppCode
{
    class Program
    {
        static object obj = new object();
        static long lvalue = 0;
        static void Main(string[] args)
        {
            System.Diagnostics.Stopwatch stopwatch = new System.Diagnostics.Stopwatch();

            Console.ForegroundColor = ConsoleColor.Red;
            stopwatch = new System.Diagnostics.Stopwatch();
            Console.ForegroundColor = ConsoleColor.Red;
            stopwatch.Start();


            int temp = int.MaxValue / 100;

           
            for (int j = 0; j < 10; j++)
            {
                string value = "";
                for (int i = 0; i < temp; i++)
                {
                    value = i.ToString();
                }
            }
            Console.WriteLine("串行总用   " + stopwatch.ElapsedMilliseconds + "ms");


            stopwatch = new System.Diagnostics.Stopwatch();
            Console.ForegroundColor = ConsoleColor.Green;
            stopwatch.Start();
            Parallel.For(0, 10, item =>
            {
                
                string value = "";
                for (int i = 0; i < temp; i++)
                {
                    value = i.ToString();
                }
            });
            Console.WriteLine("并行总用   " + stopwatch.ElapsedMilliseconds + "ms");



            Console.Read();
        }

       
    }
}

 结论:从下图看,结果显而易见,不访问相同资源循环相同次数并行比串行快一倍有余

2.现在来看看访问相同资源时,Parallel.For和串行的效率如何,以下是代码

using System;
using System.Threading.Tasks;

namespace AppCode
{
    class Program
    {
        static object obj = new object();
        static long lvalue = 0;
        static void Main(string[] args)
        {
            System.Diagnostics.Stopwatch stopwatch = new System.Diagnostics.Stopwatch();

            Console.ForegroundColor = ConsoleColor.Red;
            stopwatch = new System.Diagnostics.Stopwatch();
            Console.ForegroundColor = ConsoleColor.Red;
            stopwatch.Start();


            int temp = int.MaxValue / 100;

            //第一层循环10次
            for (int j = 0; j < 10; j++)
            {
                //第二层循环temp次
                for (int i = 0; i < temp; i++)
                {
                    //本来是不需要加的,为了控制单一变量,使其和并行一致
                    lock (obj)
                    {
                        lvalue+=i;
                    }
                }
            }
            Console.WriteLine("串行总用   " + stopwatch.ElapsedMilliseconds + "ms lvalue=" + lvalue);

            lvalue = 0;
            stopwatch = new System.Diagnostics.Stopwatch();
            Console.ForegroundColor = ConsoleColor.Green;
            stopwatch.Start();
            //第一层循环10次
            Parallel.For(0, 10, item =>
            {
                //第二层循环temp次
                for (int i = 0; i < temp; i++)
                {
                    lock (obj)
                    {
                        lvalue+=i;
                    }
                }
            });
            Console.WriteLine("并行总用   " + stopwatch.ElapsedMilliseconds + "ms lvalue=" + lvalue);



            Console.Read();
        }

       
    }
}

结论:从下图结果可以看出,访问相同资源时循环相同次数并行比串行还要慢

3.几种常用的Parallel.For的使用方法

using System;
using System.Threading;
using System.Threading.Tasks;

namespace AppCode
{
    class Program
    {
        static object obj = new object();
        static long lvalue = 0;
        static void Main(string[] args)
        {
            CancellationTokenSource cancellationSource = new CancellationTokenSource();
            ParallelOptions options = new ParallelOptions();
            options.MaxDegreeOfParallelism = 2; // 最大并行度,并行的任务有几个
            options.CancellationToken = cancellationSource.Token;

            //直接循环100次(0开始100结束),并输出线程id和循环到了几次
            Parallel.For(0, 100, (i) =>
             {
                 Console.WriteLine("Thread={0}, i={1}", Thread.CurrentThread.ManagedThreadId, i);
             });

            //这是一个跳出循环的实例
            //在 Parallel.For中,不能使用与顺序循环中相同的 break 或 Exit 语句,这是因为这些语言构造对于循环是有效的,而并行“循环”实际上是方法,不是循环。 相反,可以使用 Stop 或 Break 方法
            //1.Stop 调用方法指示尚未开始的循环的任何迭代都无需运行。 它可以有效地取消循环的任何其他迭代。 但是, 它不会停止已经开始执行的任何迭代。调用方法会导致此IsStopped属性返回true到仍在执行的循环的任何迭代。 Stop 这对于长时间运行的迭代特别有用, 它可以检查IsStopped属性并在其值为时true提前退出。
            //2.Break 指示应运行当前迭代之后的任何迭代。 它可以有效地取消循环的任何其他迭代。 但是, 它不会停止已经开始执行的任何迭代。 例如, 如果Break是从从0到1000的并行循环的第100迭代调用的, 则所有小于100的迭代仍应运行, 但不会执行从101到1000的迭代。
            //Stop和Break的区别就在于,Stop仅仅通知其他迭代尽快结束,而Break不仅通知其他迭代尽快结束,同时还要保证退出之前要完成LowestBreakIteration之前的迭代。
            ParallelLoopResult loopResult = Parallel.For(0, 1000, options, (i, loopState) =>
            {
                if (i == 100)
                {
                    loopState.Stop();
                    Console.WriteLine("Stop Thread={0}, i={1}", Thread.CurrentThread.ManagedThreadId, i);
                }

                Console.WriteLine("Finish Thread={0}, i={1}", Thread.CurrentThread.ManagedThreadId, i);
            });


            //最大并行度,并行的任务有几个,这是在上面设置的2个
            Parallel.For(0, 10, options, (i) =>
            {
                Console.WriteLine("Thread={0}, i={1}", Thread.CurrentThread.ManagedThreadId, i);
            });

            Parallel.For(0, 10, options, (i, localState) =>
            {
                Console.WriteLine("i={0}, Task={1}, Thread={2}", i, Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
            });


            Console.Read();
        }



    }
}

 

`Parallel.For` 是C#并行计算库中用于并行迭代的一个工具,为了防止不同线程之间的数据竞争(race condition)和同步问题,它提供了一些机制来保证任务的顺序执行和数据一致性。 1. **范围分解**(Range Partitioning): `Parallel.For`会将工作范围划分为多个子范围,每个线程负责处理一部分,这样就减少了并发操作对同一数据的影响。 ```csharp Parallel.For(0, 100, i => { // 在这里处理i,每个线程有自己的局部副本 }); ``` 2. **并行度限制**(Degree of parallelism): 可以通过`ParallelOptions.MaxDegreeOfParallelism`设置最多允许多少个线程同时执行。这有助于控制并发程度,减少竞争。 ```csharp ParallelOptions options = new ParallelOptions(); options.MaxDegreeOfParallelism = Environment.ProcessorCount; Parallel.For(0, 100, options, i => ...); ``` 3. **锁定**(Locks): 如果需要共享状态,可以使用`lock`关键字确保线程安全。但要谨慎使用,因为过多的锁可能会导致性能下降。 ```csharp object sharedData = new object(); Parallel.ForEach(0, 100, i => { lock (sharedData) { // 在锁定范围内更新共享数据 } }); ``` 4. **分块**(Blocking Collections): 使用`ConcurrentBag`, `ConcurrentQueue`, 或 `ConcurrentDictionary`等并行集合,它们自动管理线程同步,避免了手动管理锁的复杂性。 ```csharp ConcurrentBag<int> bag = new ConcurrentBag<int>(); Parallel.ForEach(Enumerable.Range(0, 100), i => { bag.Add(i); }); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值