题目地址:POJ 2983
这题刚上来完全不知道跟差分约束系统有什么关系。。。。。后来发现只要判个负环就可以。。
因为假如有冲突的话会形成一个负环。之所以建图加上一个正值一个负值,是因为这样的话,像1 2 4和1 2 3这样的数据就会形成一个负环。这个方法还是很巧妙的。。。然后对于V的那些不清楚的位置,就会跟P的那些等式联立形成一个不等式,然后在用最短路判环的过程中就用松弛来解决。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int d[2000], head[2000], cnt, n;
struct node
{
int u, v, w, next;
} edge[200000];
void add(int u, int v, int w)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void berman()
{
memset(d,INF,sizeof(d));
int i, j, flag, k;
for(i=1; i<n; i++)
{
flag=0;
for(j=0; j<=n; j++)
{
for(k=head[j]; k!=-1; k=edge[k].next)
{
int v=edge[k].v;
if(d[v]>d[j]+edge[k].w)
{
d[v]=d[j]+edge[k].w;
flag=1;
}
}
}
if(!flag)
break;
}
flag=0;
for(i=0; i<cnt; i++)
{
if(d[edge[i].v]>d[edge[i].u]+edge[i].w)
{
flag=1;
break;
}
}
if(flag)
printf("Unreliable\n");
else
printf("Reliable\n");
}
int main()
{
int m, a, b, c, i;
char ch;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(head,-1,sizeof(head));
cnt=0;
while(m--)
{
getchar();
scanf("%c",&ch);
if(ch=='P')
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,-c);
add(b,a,c);
}
else
{
scanf("%d%d",&a,&b);
add(a,b,-1);
}
}
berman();
}
return 0;
}