工作主要分为几大块:
类型:
- 数据处理(数据工程师)
- 数据开发(后台开发)
- 数据展现(前端开发、GIS开发)
工作步骤,两种模式:
-
数据驱动:
初步原型设计->数据需求梳理->数据接入->数据清洗转换->数据库设计->原型修正->UI设计->前端开发->后端开发->前后联调->部署->测试->迭代 -
需求驱动:
原型设计->数据梳理->数据库设计->UI设计->前端开发->后端开发->前后联调->部署->测试->数据接入->数据清洗转换->迭代
优点:=================================================================
数据驱动:
1.只要需求不发生变化,一次便可完成,后面只是小的修补。
需求驱动:
1.无需等待数据,可按照进度假想数据进行推进,更易推进。
缺点:=================================================================
数据驱动:
- 需要等待数据进入,才能启动设计开发,启动时间晚。
- 需求发生大变化时,所有前期投入都会浪费。不太适合需求频繁变更的场景。
需求驱动:
- 根据需求直接进行开发,后续进入的数据缺失,或无法进入,或数据被替换为其他类型时,都需要重新进行设计开发。
导致第一版大概率是demo。因此不太适合数据风险大的场景。
总结:
那么问题来了,目前的场景是既需求变化频繁,又数据风险大,应该如何选择?
就得把设计开发工作进行分类:
- 如果是简单开发,那么选择需求驱动。因为更容易推进,并且简单开发容易修改。
- 如果是困难开发,例如模型开发,那么选择数据驱动。因为修改成本更高,尽可能等到数据、需求都到位。
分类,选择不同应对方式非常重要。精准解决相应问题。