数据结构和算法之美笔记 —— 复杂度分析

目录

一、时间复杂度 时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系

二、时间复杂度分析

1. 只关注循环执行次数最多的一段代码

2. 加法法则:总复杂度等于量级最大的那段代码的复杂度

3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

二、常见的时间复杂度量级

1. O(1):只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。

2. O(logn)、O(nlogn)

3. O(m+n)、O(m*n):代码的时间复杂度由两个数据的规模来决定

三、空间复杂度分析:空间复杂度全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系 常见的空间复杂度就是 O(1)、O(n)、O(n2 )

复杂度大小关系

四、最好情况时间复杂度、最坏情况时间复杂度、平均情况时间复杂度

1、平均时间复杂度或者期望时间复杂度

2、均摊时间复杂度


一、时间复杂度

数据结构和算法之美 - 03

大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

1、假设每行代码执行的时间都一样,为 unit_time(一个单位时间)

  • 第 2、3 行代码分别需要 1 个 unit_time 的执行时间
  • 第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。
  • 可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。时间复杂度为O(n);
1.int cal(int n) {
2.   int sum = 0;
3.   int i = 1;
4.   for (; i <= n; ++i) {
5.     sum = sum + i;
6.   }
7.   return sum;
8. }

2、假设每行代码执行的时间都一样,为 unit_time(一个单位时间)

  • 第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间
  • 第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间
  • 第 7、8 行代码循环执行了 n2次方遍,所以需要 2n2 * unit_time 的执行时间
  • 所以,整段代码总的执行时间 T(n) = (2n2+2n+3)*unit_time。 时间复杂度O(n^2)
1.int cal(int n) {
2.   int sum = 0;
3.   int i = 1;
4.   int j = 1;
5.   for (; i <= n; ++i) {
6.     j = 1;
7.     for (; j <= n; ++j) {
8.       sum = sum +  i * j;
9.    }
10.   }
11. }

二、时间复杂度分析

1. 只关注循环执行次数最多的一段代码

 

2. 加法法则:总复杂度等于量级最大的那段代码的复杂度

整段代码的时间复杂度就为 O(n2)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。

int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

  • 我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。
  • 但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),
  • 所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n2)。
int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  } 
  return sum;
 }

二、常见的时间复杂度量级

分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2^n) 和 O(n!)

当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。

1. O(1):只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。

2. O(logn)、O(nlogn)

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x ,x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

以下时间复杂度为O(log3n)

 i=1;
 while (i <= n)  {
   i = i * 3;
 }

实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)

3. O(m+n)、O(m*n):代码的时间复杂度由两个数据的规模来决定

从代码中可以看出,m 和 n 是表示两个数据规模。

我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

三、空间复杂度分析:空间复杂度全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系

跟时间复杂度分析一样:

  • 第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。
  • 第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间。

所以整段代码的空间复杂度就是 O(n),但实际应用过程中我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。这里存储数据需要一个大小为 n 的数组,这 n 个空间是必须的,无法省掉。在代码操作过程中只需要一个临时变量存储空间,所以空间复杂度是 O(1)。

1.void print(int n) {
2.  int i = 0;
3.  int[] a = new int[n];
4.  for (i; i <n; ++i) {
5.    a[i] = i * i;
6.  }
7.  for (i = n-1; i >= 0; --i) {
8.    print out a[i]
9.  }
}

复杂度大小关系

四、最好情况时间复杂度、最坏情况时间复杂度、平均情况时间复杂度

数据结构与算法之美-04

// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

要查找的变量 x 可能出现在数组的任意位置。

  • 如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。
  • 但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。

所以,不同的情况下,这段代码的时间复杂度是不一样的。为了表示代码在不同情况下的不同时间复杂度,我们需要引入三个概念:最好情况时间复杂度、最坏情况时间复杂度和平均情况时间复杂度。

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。

最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。

最好情况时间复杂度和最坏情况时间复杂度对应的都是极端情况下的代码复杂度,发生的概率其实并不大。为了更好地表示平均情况下的复杂度,我们需要引入另一个概念:平均时间复杂度

1、平均时间复杂度或者期望时间复杂度

要查找的变量 x,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。因此,前面的推导过程中存在的最大问题就是,没有将各种情况发生的概率考虑进去。如果我们把每种情况发生的概率也考虑进去,那平均时间复杂度的计算过程就变成了这样:

这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度。

2、均摊时间复杂度

对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。

例如:每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。例如栈的动态扩容

 

 

 

 

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值