Kmeans算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。Kmeans算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为K个类别,算法描述如下:
(1)适当选择K个聚类的初始中心;
(2)在第K次迭代中,对任意一个样本,求其到K个中心的距离,将该样本归到距离最短的中心所在的簇;
(3)重新计算各个簇(聚类)的中心;
(4)对于所有的K个聚类中心,如果利用(2)(3)反复迭代,重新计算新旧中心的距离,若距离不变或小于某个阀值,则迭代结束。
该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。
这里最关键的地方就是初始中心K的选择,这里的选择好坏会很大程度上影响最终聚类的结果。
算法实现:下面简单利用距离计算方式演示聚类效果:
package com.wxshi.kmean;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
/**
* Kmeans算法演示
* @author wxshi
*
*/
public class Kmeans {
private List<ArrayList<Double>> centers;
private List<ArrayList<Double>> newCenters;
private List<ArrayList<ArrayList<Double>>> clusterList;
private int clusterNum = 5; //默认聚类的个数
/**
* 默认构造不对外抛
*/
private Kmeans(){
}
public Kmeans(int clusterNum){
if(clusterNum<=0){
clusterNum = 5;
}
this.clust