There are N students in a class. Some of them are friends, while some are not. Their friendship is transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C, then A is an indirect friend of C. And we defined a friend circle is a group of students who are direct or indirect friends.
Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j] = 1, then the ith and jth students are directfriends with each other, otherwise not. And you have to output the total number of friend circles among all the students.
Example 1:
Input: [[1,1,0], [1,1,0], [0,0,1]] Output: 2 Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
The 2nd student himself is in a friend circle. So return 2.
Example 2:
Input: [[1,1,0], [1,1,1], [0,1,1]] Output: 1 Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends,
so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.
Note:
- N is in range [1,200].
- M[i][i] = 1 for all students.
- If M[i][j] = 1, then M[j][i] = 1.
审题后此题为图论问题,首先为无向图,找多少个朋友圈子实际上就要求找有多少个联通分量;
所以可以选择图的深度搜索,搜索生成最小树后,圈子加一,并且循环从剩下的点中深度搜索,所以代码如下:
class Solution {
public:
vector<int> temp;
void deep(vector<vector<int> >& M,vector<int>::iterator col){
if(Solution::temp.empty()) return ;
int size = M.size();
int coll = *col;
Solution::temp.erase(col);
if(Solution::temp.empty()) return ;
for(int i = 0; i < size; i++){
if(M[coll][i] == 1){
vector<int>::iterator k;
for(k = Solution::temp.begin(); k!=Solution::temp.end(); k++){
if(*k == i){
deep(M, k);
break;
}
}
}
}
}
int findCircleNum(vector<vector<int> >& M) {
int size = M.size();
for(int i = 0; i < size; i++){
Solution::temp.push_back(i);
}
int circle = 0;
while(!Solution::temp.empty()){
vector<int>::iterator k = Solution::temp.begin();
deep(M, k);
circle++;
}
return circle;
}
};