01丨如何验证你的产品创意
在产品创意之初,我们要做的第一件事情就是大量收集信息,信息的领域又包括了“上下左右,古今中外”,以及,我们通过什么样的方式可以高效地收集和获取信息。
02 | 如何锤炼你的产品创意
- 行业未来会是什么样子的?
- 行业痛点和机会在哪里?
- 为什么你能做成,你打算怎么做?
- 给直觉一个机会
03丨要不要相信你的调查问卷
第一个经验:做调研之前,先列清单和计划
第二个经验:保证用户可以流畅地回答问题
第三个经验:调研中,尽量少提假设性问题
第四个经验:不要套路你的用户
第五个经验:跳出你的调查问卷
04 | 用最少的资源给你的产品试试水
通过类似于“未完成的功能键”这样的快速检验案例,你可以用最小的资源测试产品的应用场景是否存在。当然了,在使用工具的过程中,也不要忘记了去验证产品的创意起点,也就是“用户是不是真的会对此感兴趣”。
然后我还跟你分享了一个我在实际过程中去应用了 MVP,然后通过 MVP 发现了我自己的想法是伪需求,并且叫停了工程这样的一个经历。
05 | 如何快速利用 MVP 思想
1. 提前推演逻辑,不要盲目验证
2. 验证长板,而非短板
3. 创造性的低成本方案
3-1. 用人工替代系统
3-2. 利用第三方系统
3-3. 利用规则缩小场景
4.MVP 的另一面
首先是提前推演逻辑,不要盲目验证。其次是你需要验证的是你的长板,而不是短板。接下来我还分享了三种低成本的解决方案:用人工替代系统、利用第三方系统以及利用缩小场景来做到快速实现。最后我要提醒你的是,MVP 也是有自己的局限,切记不要一概而论。
06 | 如何做好产品立项
1. 识别相关方,理解产品对业务的影响
今天我与你分享了产品立项中的几点要素。首先是识别相关方,理解你所做的产品对业务的影响。其次是明确各方的需求,争取联合大家的利益,达到共赢。了解了各方的需求后,你需要做好一个合理的估算,从而安排一个妥当的计划。最后我们协调了各方,统一了利益,也做好了估算后,要确定为你的产品获得足够的资源。
07 | 产品发布的那些坑儿
一个是每到项目发布就非常紧张,如临大敌,草木皆兵,为此经常被同事调侃;另一个是我自己一直以来悄悄记录着一个发布时的检查清单,在很长一段时间里,每当自己负责的项目发布时,我都会对着看一遍。
1. 该知道的人知道了吗
这是在大公司里养成的习惯,简短地跟相关人说一下什么东西发布了,可能会带来些什么改变等等。发布通知尽可能冷静克制,发到合适的人就好了,别漏掉谁,也别什么事儿都兴师动众给全公司发邮件。
另外一般发布通知最后会有一两句致谢,感谢兄弟部门的配合之类的就好了,真诚简短足矣,不要加戏。
2. 脑子里排练过吗
3. 万一出意外有退路吗
08 | 产品增长越来越难,到底应该怎么办
1. 为什么增长会越来越难
2. 增长的新趋势
09 | 产品增长的核心,究竟是什么
所以在我们谈论增长时,应当先回到产品本身,只有从这里出发,所有的一切才能立得住,否则就是空中楼阁,纸上谈兵。
1. 创造产品的 “啊哈”时刻
第一个是所谓的“啊哈”时刻,这是指用户在使用产品的过程中,在某一个情境和体验点上,突然意识到这个产品的价值所在,发现其中的奥妙,并为之眼前一亮的那个时刻。
2. 观察用户如何描述你的产品
总结
我曾经跟很多人举例子,把产品比作帆船,其中帆可能是它品牌的名气、运营的手段或拉新的能力,而船体则是产品价值本身。船小而帆大则航行不稳甚至可能倾覆,船大而帆小则步履维艰甚至止步不前,
增长的手段也一样,不要舍本逐末,把刷屏当做目标,它只是手段,产品价值本身才是目标。
10 | 你需要组建增长团队吗,应该如何组建呢
1. 增长团队的经典结构与搭建逻辑
增长团队的搭建通常分为“两个阶段”和“两条路径”。
2. 在现有组织架构中的增长实践
2-1. 增长团队的角色
2-2. 协调增长策略的规划与产品规划
2-3. 一定要有实权负责人全力支持甚至直接参与
11 | 产品增长有哪些业务公式与关键指标
1.“AARRR”模型
首先我们来了解用户增长这个领域中的一个著名的框架,它是 Dave McClure 提出的“AARRR”模型,也被称作海盗指标(Pirate Metrics)。
这里的“AARRR”指的是用户与产品互动整个周期中五个顺序发生的重要环节,分别是获取(Acquisition)、激活(Activation)、留存(Retention)、变现(Revenue)和传播(Referral)。
2. 不要试图兼顾所有的环节
3.“留存”是最重要的指标
12 | 产品增长有哪些业务公式与关键指标?(下)
1. 选定目标
2. 拆解业务公式
3. 选定支点
13 | 产品做增长的过程中,有哪些关键套路
增长的实施过程:建立数据体系 → 分析 → 提出想法 → 排定优先级 → 测试。
1. 建立数据体系是增长的前提
使用自有打点策略和日志工具进行复杂分析 > 使用第三方工具进行自定义打点与复杂分析 > 使用自有打点策略进行简单分析 > 使用第三方工具的基本功能进行简单分析
2. 分析的目的
3. 提出想法
4. 排定优先级
5. 实施测试
6. 周而复始
14 | 实战增长,我们要知道哪些事儿
1. 每次开五枪,每五枪命中一枪
2. 提高尝试的成功率、准确率与效率
3. 在设计方案的时候,要带着下线的准备
15 | 增长执行时,需要哪些关键的能力
1. 自愈力:动态完善策略的重要战术素养
2. 决断力,增长迭代过程中的关键能力
下面是AARRR的介绍
产品的增长其实并不是被发明的流程,它是一直存在的。人们通过各种方式发现产品和服务(获客),被吸引并动手尝试(激活),成为产品的用户不时地来使用它(留存),为它付费(变现),并推荐给更多的用户(传播)。
16 | 当钩子靠不住时,如何提高用户留存?(上)第一个A,获取
1.留存的本质与钩子
钩子的第一个合理用途:告知新价值。
钩子的第二个用途是帮助用户培养习惯。
钩子的第三种则是为了完成产品本身功能闭环不可或缺的推送或通知。
2.留存的周期与分析
第一个原则是,不同产品应当有不同的时间框架,不要一概而论。
第二个原则是对留存有足够长时间的观察。
第三个分析原则是尽可能细分分析。
17 | 当钩子靠不住时,如何提高用户留存?(下)第一个A,获取
1. 会员特权吸引留存
2. 直接利益吸引
3. 产品本身包含留存特性
4. 用有节奏的持续迭代提供新功能来给用户以回报
18 | 如何把你的新用户转化为忠实的长期用户?第二个A激活
1. 了解
- 描述要保持清晰、简洁;
- 要从用户问题的角度出发进行描述;
- 以私人口吻而不是外交辞令;
- 最好可以图文并茂或图表并茂;
- 可以利用媒体或用户的赞誉为我们的产品增加社交背书;
- 通过技术的手段识别用户来源,针对不同来源不同属性的用户,根据其动机进行个性化的产品介绍;
- 通过与竞品的直观对比引导用户认知。
2. 行动
首先第一原则是一定要精简,不要给用户太多选择。
第二个原则是尽可能将门槛后移。
第三个原则是要设计好新用户引导。
3. 打动
19 | 满眼尽是“病毒”“裂变”,到底什么是传播和获客的正确姿势?(上)第一个A获取和最后一个R传播的关系
1. 传播与获客的关系
2. 获客的原则
获客的核心原则只有一条,就是明确用户画像,找到他们聚集的地方,并想办法拉拢他们。
3. “流量品类”与“利润品类”
4. 吸引的效率
一种是靠表达,我们需要通过文案或图示、视频的方式,说明我们产品的价值和优势。另一种吸引用户的方式是靠利益,我们前面聊激活的时候也提到过类似手段,比如下载送红包、使用送礼物等等。
20 | 满眼尽是“病毒”“裂变”,到底什么是传播和获客的正确姿势?(下)第一个A获取和最后一个R传播的关系
1. 传播的两种类型
第一种是非常直接的产品推荐,比如你在使用某个产品一段时间后,觉得它的内容对你很有帮助
另一种则是产品使用过程中潜移默化的推荐。比如你将文章分享给朋友或分享到朋友圈
2. 动机与设计
第一种,我们能够干涉和改变的空间并不大,这主要取决于我们产品的核心功能是不是真的对用户有价值,以及能否成功地向用户植入鲜明的品牌印象。
另一个常见的推荐场景是向领域专家的求助。
3. 成就用户,而不是凸显自己
用户愿意传播一个产品或服务,背后最本质的动机通常不是“这个产品很牛”,而是“这个产品让我看起来很牛”。
21 | 增长黑客的阴暗面
1. 对“增长黑客”保持克制
2. 朝着用户利益努力
22 | 产品经理需要具备哪些基本的数据能力和意识?
数据是产品经理最忠实的伙伴,它是理解产品现状的基础,是做出产品抉择的依据。数据分析能力通常也是产品经理技能图谱中最显著的内容。
1. 养成数据走查习惯
这时我们可以通过一些第三方数据工具,看一下宏观指标,比如日活、用户新增、留存等。另外也会看一下收入情况,比如总收入、总订单笔数等等。
2. 建立数据体系
初期可能会会有一个相当长的阶段,我们自己的工具平台可能远不如第三方平台丰富、易用和强大。这是很正常的现象,在这个过程中一定要有大局观念,咬牙尽可能多地使用自己的数据工具,只有这样才能帮助自建数据体系,快速度过尴尬期,发挥最大效应。
3. 数据仪表盘视图
这个仪表盘有可能是第三方工具默认提供的(比如小程序数据统计工具),也可能是通过第三方工具自定义的数据视图(比如 GA 的自定义 Dashboard),也可能是自建数据平台的前端视图(比如我们是通过 Tableau 来构建业务数据的分析视图),还可能是从各个数据源拉取数据之后,在本地构建数据视图(比如用 Excel)
所有的数据图示究其目的,都是为了尽可能直观地展现对比。
23 | 突发式流量数据暴跌,产品经理应该如何应对?【分析篇】
1. 有没有业务变化或发布?
面对流量暴跌,我们要考虑的第一个可能性:是有没有产品或业务的变化。
2. 排除技术故障可能性
如果我们自己的系统没有故障,我们就需要排除环境故障。
3. 流量降低的“案发现场”在哪里
找到案发现场,并不代表找到了具体的原因,只是找到了进一步做数据分析的一个努力方向,所以还是不能松懈。
4. 数据变化的渠道特征
Web 流量分为直接流量、搜索引擎和引荐流量三大类型,搜索引擎又分为自然搜索和付费搜索结果的来流。
24 | 突发式流量数据暴跌,产品经理应该如何应对?【拆解篇】
1. 新老用户
2. 不同行为模式的用户
除了对用户的客观属性进行分类外,我们还可以从业务出发对用户进行分类,通过根据用户在产品中的行为和轨迹,为用户加上各种标签来区分用户。
3. 业务有关的数据因果
产品中的任何一个业务数字,都应当可以逆向推出计算方法。
4. 其他不可抗因素
例如:开学、政策、引流渠道等
25 | 突发式流量数据暴跌,产品经理应该如何应对?【处理篇】
1. 数据分析要形成结论
- “流量降低 20%”,为什么?
- 因为商品详情流量降低了。
- 为什么?
- 因为引荐流量降低了。
- 为什么?
- 因为我们的投放渠道到期了。
2. 进行必要的有效沟通
有时候这样的数据波动可能是工作失误导致的,所以我们不愿意声张,其实大可不必,面对问题,分析问题和解决问题本来就是我们的日常工作。
3. 要有应对策略
合格的产品经理,面对像“流量骤降 20%”这样的情境,应当能够从短期、中期和长期出发,去考虑如何应对,即便是经过权衡后决定不采取任何措施,只是保持继续观察,也是一种策略。
短期策略指的是如何快速把数据抢救回来;中期指的是怎样修复相应机制,防止问题再次发生;长期则是指类似的数据波动是否会对我们整体的产品规划和方向选择有所影响。
4. 总结
在做完数据分析后,我们首先要做的是形成一个具体的结论,接下来,我再围绕这个结论,与相关方进行有效沟通,这里的有效沟通指的是要有结论,并且精简直接。最后我们还要按照短期、中期、长期制定一系列的应对策略。