三国演义主要人物个人经历

三国演义主要人物个人经历

刘备

刘备,字玄德,涿郡涿县人,以卖草鞋为生。

黄巾之乱

  1. 涿郡涿县,师从卢植,与公孙瓒为同学
  2. 黄巾之乱爆发,刘备28岁,与关羽,张飞桃园三结义
  3. 幽州太守刘焉招募军队抵抗黄巾来犯,刘关张三人引五百人应诏
  4. 黄巾军程志远领兵五万涿郡刘焉刘备领兵五百前去抗敌。大胜
  5. 青州事急,青州太守龚景救助与刘焉,刘焉刘关张三人助战,领兵五千。埋伏两路奇兵,解了青州之急。
  6. 刘关张三人引本部五百人马投奔在广宗张角作战的卢植
  7. 卢植命三人前往在颍川张宝张梁抗衡的皇甫嵩、朱隽处打探消息。
  8. 皇甫嵩、朱隽二人大胜,断定张宝张梁必定去广宗投奔张角,让刘关张三人返回广宗帮助卢植。
  9. 三人在回广宗路上遇到被装在囚车里的卢植,于是决定回涿郡
  10. 回涿郡的路上碰到了被黄巾军打败逃窜的董卓,出手相助,董卓却因三人没有官职而相轻,三人便离开董卓投奔朱隽
  11. 朱隽阳城附近张宝作战。将张宝逼入阳城坚守不出,后张宝一将领严政刺杀张宝,献首投降。
  12. 黄巾余党赵弘、韩忠、孙仲宛城叛乱,朝廷命朱隽引兵平定,刘备献计围城西北,留东南与贼走,杀了韩忠。后围城攻打,孙坚杀了赵弘,刘备一箭射死孙仲。
  13. 刘备三人随朱隽进京,未得封官。
  14. 因多人死谏,十常侍封一小官给刘备:定州中山府安喜县尉(县令属官,秩四百石,管治安),赴任。
  15. 督邮讨要贿赂,张飞鞭笞之,刘关张三人弃官转而投奔代州刘恢
  16. 朝廷封刘虞为幽州牧,平定渔阳张纯张举之乱,刘恢推荐刘关张三人给刘虞,刘虞大喜。后破敌制胜,朝廷免督邮之罪,封为平原县令

十八路诸侯讨伐董卓

  1. 曹操发矫诏讨伐董卓,诸镇响应,公孙瓒在前往陈留途中,刘关张三人跟随公孙瓒参与联盟。
  2. 联盟破裂,刘备回平原任平原相。
  3. 曹操破了马腾起义,手下文武齐全,命人去琅琊接曹嵩,曹嵩路经徐州,徐州太守陶谦为结交曹操款待曹蒿,并派自己的手下张闿带五百兵护送曹蒿,张闿杀了曹蒿取其钱财上山落草。曹操大怒讨伐徐州。陶谦求救于孔融,孔融的北海恰有叛乱,求救于刘备,刘备破了北海之乱后随孔融一起前往徐州。刘备修书一份给曹操,恰逢吕布攻破曹操老家兖州,曹操退军。后陶谦因病死,将徐州让给了刘备。

博主边看边写,不定期更新。

<think>好的,用户的问题是想要从《三国演义》的文本中提取主要人物来构建知识图谱的节点。首先,我需要理解用户的需求。知识图谱的节点通常需要明确的实体,这里主要人物,所以关键点在于如何从文本中识别出主要人物并提取出来。 接下来,我需要考虑可能的步骤和方法。常见的文本分析技术包括自然语言处理(NLP)中的命名实体识别(NER),这应该是核心方法之一。但《三国演义》是古典文学,可能存在人名与现代的不同,比如复姓(如诸葛亮、司马懿)或者别称,这可能会影响识别准确性。因此可能需要结合词典或预训练模型来优化。 然后,用户可能需要预处理文本,比如分词处理,特别是中文分词,因为传统的中文没有空格分隔词语。这时候可能需要特定的分词工具,比如HanLP、Jieba等,这些工具是否支持古典文学中的词汇?可能需要自定义词典来补充,例如加入三国人物的名称,以提高分词的准确性。 接下来是人物出现频率的统计。用户需要的是主要人物,所以出现次数多的角色更可能是主要节点。这里需要编写代码统计人物出现的次数,并设定阈值来筛选主要人物。同时,还要注意别称和同一人物的不同称呼,比如刘备,可能被称为玄德、刘皇叔等,这需要进行实体统一,否则会重复统计。 然后,构建共现网络可能有助于分析人物之间的关系,但用户的问题主要是提取节点,所以这一步可能不是必须的,但可以作为辅助手段确认人物的重要性。例如,频繁与其他人物互动的人物更可能是主要角色。 最后,知识图谱的构建可能需要将提取的人物与其他属性关联,但用户目前只需要节点,所以重点在提取人名。可能需要使用到NLP库如spaCy、StanfordNLP,或者中文特定的工具如LTP、FudanNLP等。同时,考虑到《三国演义》的文本结构,可能需要处理章回体结构,分章节处理人物出现情况。 现在需要验证这些步骤是否可行。例如,使用预训练的NER模型是否能准确识别三国人物?可能需要用已有的三国人物列表作为词典来增强识别。此外,处理中文分词的难点,特别是古典中文中的分词问题,可能需要专门的处理工具或自定义调整。 还有,用户可能希望具体的代码示例,比如用Python展示如何实现NER和统计。这时候需要提供代码片段,并确保格式正确,如使用三个反引号注明语言类型。同时,数学公式的统计方法,比如TF-IDF是否适用?不过这里可能更简单的是频率统计,所以公式可能用出现次数作为指标。 最后,生成相关问题需要考虑用户可能的后续步骤,比如关系提取、图谱构建工具,或者如何处理别名等问题。因此,相关问题可以围绕这些扩展点来设计。</think>从《三国演义》文本中提取主要人物构建知识图谱节点可通过以下方法实现: --- **1. 命名实体识别(NER)技术** 使用自然语言处理工具识别文本中的人名实体。针对古典文学特点,建议采用支持中文古籍的预训练模型或补充自定义词典: ```python from ltp import LTP ltp = LTP() text = "却说玄德同行军民十馀万,大小车数千辆" seg, hidden = ltp.seg([text]) ner = ltp.ner(hidden) # 输出:['玄德'(PER)] ``` **2. 人物频率统计分析** 通过词频统计筛选核心人物,设置阈值过滤次要角色。典型统计公式: $$ \text{人物权重} = \frac{\text{出现次数}}{\text{总段落数}} \times \log(1+\text{章节分布广度}) $$ **3. 别称归一化处理** 建立人物别名映射表解决同一人物不同称谓问题: ```json { "刘备": ["玄德", "刘皇叔", "先主"], "曹操": ["孟德", "丞相", "魏王"] } ``` **4. 共现网络分析** 结合人物共现关系验证核心性,计算公式: $$ \text{中心度} = \sum_{i \neq j} \frac{\text{共现次数}_{ij}}{\max(\text{出现次数}_i, \text{出现次数}_j)} $$ **5. 知识图谱节点构建** 将提取结果转化为结构化数据,示例节点属性: ```turtle <刘备> rdf:type :Person ; :chineseName "刘备" ; :alias "刘玄德" ; :firstAppearance "第1回" ; :totalOccurrences 1426 ; :centralityScore 0.83 . ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值