知识点
并查集(Disjoint Sets):用互质集合(一个元素不同时包含于多个集合的集合)对数据进行分类管理的数据结构,包含的操作:
- makeSet(x):创建仅包含元素x的新集合
- findSet(x):求包含元素x的集合的代表元素(representative)
- unite(x,y),合并指定的元素x,y
- -
在并查集中,查询指定两个元素x,y是否包含于同一集合的操作称为Union Find。
树的集合称为森林(Forests)。构成森林的树代表各个集合,树的各结点代表集合内的各元素。
代表元素(representative):各个树的根结点,findSet(x)将返回元素x所属树的根结点的值,所以Union Find就是找出其的代表元素是否是同一个。
路径压缩:求代表元素时的同时,对起始元素到代表元素之间的路径上的所有结点进行修改,使结点的指针全都指向代表元素。
unite(x,y)操作时,需要在x的代表元素和y的代表元素中选出一个作为新的代表元素,同时将另一个代表元素的指针指向新的代表元素。
问题链接
DSL_1_A:Disjoint Set: Union Find Tree
问题内容
对于n个元素,进行q次操作,如果 comi 是0则是unite,如果是1则same,其中untie(x,y)是合并元素x,y;same(x,y)是比较x,y是否在同一个集合。
思路
对于每个函数实现相应的功能
代码
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
class DisjointSet {
public :
// rank记录树的高度
vector<int> rank, p;
DisjointSet() {};
DisjointSet(int size) {
rank.resize(size, 0);
p.resize(size, 0);
for (int i = 0; i < size; i++)
makeSet(i);
}
void makeSet(int i) {
p[i] = i;
rank[i] = 0;
}
bool same(int x, int y) {
return findSet(x) == findSet(y);
}
void unite(int x, int y) {
link(findSet(x), findSet(y));
}
void link(int x, int y) {
// 包含x的树的高度更高,则将y的树合并到x上
if (rank[x] > rank[y])
p[y] = x;
else {
p[x] = y;
if (rank[x] == rank[y])
rank[y]++;
}
}
int findSet(int x) {
if (x != p[x])
p[x] = findSet(p[x]);
return p[x];
}
};
int main()
{
int n, a, b,t, q;
scanf("%d %d", &n, &q);
DisjointSet ds = DisjointSet(n);
for (int i = 0; i < q; i++) {
scanf("%d %d %d", &t, &a, &b);
if (t == 0)
ds.unite(a, b);
else
printf("%d\n", ds.same(a, b) ? 1 : 0);
}
return 0;
}