数论
文章平均质量分 62
小酷miki
这个作者很懒,什么都没留下…
展开
-
拓展欧几里德算法
拓展欧几里德算法定义 已知整数a,b,必存在整数x,y,使得 ax + by = gcd(a,b).例子 用类似辗转相除法,求二元一次不定方程 47x+30y=1的整数解。47 = 30 ×\times 1 + 1730 = 17 ×\times 1 + 1317 = 13 ×\times 1 + 4 13 = 4 ×\times 3 + 1 然后把它们改写成“余数等于”的形原创 2017-12-13 13:21:25 · 204 阅读 · 0 评论 -
同余式和裴蜀定理
同余式定义 如果m整除a-b,我们就说a与b模m同余并记之为 a≡ba\equiv b (mod m)裴蜀定理定义 对任意两个整数 a、 b,设 d是它们的最大公约数。那么关于未知数 x和 y的线性丢番图方程(称为裴蜀等式): ax+by=m有整数解(x,y) 当且仅当m 是d 的整数倍。裴蜀等式有解时必然有无穷多个解。证明 证明: 如果a 和 b 中有一个原创 2017-12-13 13:22:34 · 390 阅读 · 0 评论 -
欧拉函数
定义 欧拉函数是小于n的正整数中与n互质的数的数目。它又称为Euler’s totient function、φ函数、欧拉商数。 例如φ(8)=4,因为1,3,5,7均和8互质。性质性质一对于一个质数n,φ(n)=n−1\varphi(n) = n - 1 证明:因为质数n与1~n-1都是互质。性质二若p是质数,n=pkn = p^k,则φ(n)=pk−pk−1=(p−1)pk−1\varp原创 2017-12-12 16:54:38 · 2591 阅读 · 0 评论 -
欧拉函数 (一些性质和运用)内置杜教筛
定义在数论中,对正整数n,欧拉函数是小于等于n的数中与n互质的数的数目。并且用符号φ(n)表示一个整数的欧拉函数。例如φ(8)=4。特殊的φ(1)=1。一些欧拉函数的性质性质一对于一个质数n,φ(n)=n−1。 证明: 因为n是质数。性质二若n=pk,则φ(n)=pk−pk−1=(p−1)pk−1。 证明: 因为除了p的倍数外,其他数转载 2017-12-11 10:30:59 · 449 阅读 · 0 评论 -
欧几里德算法
欧几里德算法(辗转相除法)定义 主要用于计算两个正整数的最大公约数,具体操作步骤如下: 设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=qr(0≤r1)。若r=0,则(a,b)=b;若r≠0,则再用b除以r,得b÷r=qr(0≤r).若r=0,则(a,b)=r,若r≠0,则继续用r除以r,如此下去,直到能整除为止。其最后一个为被除数的余数的除数即为(原创 2017-12-12 15:22:00 · 260 阅读 · 0 评论 -
NOY 139 康托展开
题目链接NOY 139 我排第几个 现在有”abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小>的? 输入 第一行有一个整数n(0<n<=100000<n<=10000); 随后有n行,每行是一个排列; 输出 输出一个整数m,占一行,m表示排列是第几位; 样例输入 3 ab原创 2017-12-16 17:34:09 · 143 阅读 · 0 评论 -
POJ 1845 【数论】
题目链接:POJ 1845题意 求ababa^b的所有约数之和,最终结果对9901求模需要知识 1、快速幂:二分法求nmnmn^m的结果 2、因数分解:遍历求出所有因数 3、约数和定理:假设n=p1a1∗p2a2∗...pnanp1a1∗p2a2∗...pnan{p_1}^{a_1} * {p_2}^{a_2} * ...{p_n}^{a_n}, 其中pipi...原创 2018-05-10 10:16:38 · 213 阅读 · 0 评论