同余式和裴蜀定理

同余式

定义

如果m整除a-b,我们就说a与b模m同余并记之为
ab (mod m)

裴蜀定理

定义

对任意两个整数 a、 b,设 d是它们的最大公约数。那么关于未知数 x和 y的线性丢番图方程(称为裴蜀等式):
ax+by=m

有整数解(x,y) 当且仅当m 是d 的整数倍。

裴蜀等式有解时必然有无穷多个解。

证明

证明:
如果a 和 b 中有一个是0,比如 a=0,那么它们两个的最大公约数是 b。这时裴蜀等式变成 by=m,它有整数解(x,y) 当且仅当m 是d 的倍数,而且有解时必然有无穷多个解,因为x 可以是任何整数。定理成立。
以下设 a和 b 都不为0。
A={xa+yb;(x;y)Z2} ,下面证明 A中的最小正元素是a 与 b 的最大公约数。
首先, AN 不是空集(至少包含 |a| 和 |b|),因此由于自然数集合是良序的,A 中存在最小正元素 d0=x0a+y0b 。考虑A中任意一个正元素p( =x1a+y1b )对 d0 的带余除法:设 p=qd0+r ,其中q 为正整数, 0r<d0 。但是
r=pqd0=x1a+y1bq(x0a+y0b)A
因此 r=0, d0 | p 。也就是说,A中任意一个正元素p都是 d0 的倍数,特别地: d0 | ad0 | b 。因此 d0 是 a 和 b 的公约数。
另一方面,对a 和 b 的任意正公约数 d,设 a=kd、 b=ld,那么
d0=x0a+y0b=(x0k+y0l)d
因此 d | d0 。所以 d0 是 a 和 b 的最大公约数。
在方程 ax+by=m中,如果 m=m0d0 ,那么方程显然有无穷多个解:
{(m0x0+kbd, m0y0kad)kZ}
相反的,如果 ax+by=m有整数解,那么 |m|A ,于是由前可知 d0 | |m| (即 d0 | m )。

m=1时,方程有解当且仅当a、b互质。方程有解时,解的集合是
{(mdx0+kbd, mdy0kad)kZ} 。其中 (x0,y0)(x0,y0) 是方程 ax+by=d的一个解,可由辗转相除法得到。
所有解中,恰有二解(x,y) 满足 |x||b/d| |y||a/d| ,等号只会在a及b其中一个是另一个的倍数时成立。辗转相除法给出的解会是这两解中的一个。

性质

(1)裴蜀定理是拓展欧几里德的一般形式
(2)裴蜀定理可以用来求同余式

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值