这题的意思是给一个集合,最多有12个元素。找出只能被集合中一个仅且一个数整除的第n个数。(n <= 10^15)。
我用容斥原理做的。先把能被每个数整除的元素个数累加,当然会有重复的。若某个数由集合中两个数组成,那么要减去所有这个数的整数倍,而且要减两次,因为他是两个数的公约数,而当某个数是其中三个数的公约数,那他一定也是两个数的公约数,这样就多减了c[k][2]个,就得加上。以此类推。
要求第n个数,题目说答案最大是10^15,我以10^15为界限进行二分,对于[1,m]内若符合条件的数是res个,若res >= n,那么high = mid-1,否则low = mid+1。
但是我的代码没过,无限TLE。。代码先贴这里,希望路过的大神给予指点。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <bitset>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
//#define long long __int64
//#define LL long long
#define eps 1e-9
#define PI acos(-1.0)
//typedef __int64 LL;
using namespace std;
const long long Max = 1000000000000000;
int k;
long long n;
int a[15];
long long C[15][15];
long long gcd(long long a, long long b)
{
if(b == 0) return a;
return gcd(b,a%b);
}
long long lcm(long long a, long long b)
{
return a/gcd(a,b)*b;
}
void init()
{
memset(C,0,sizeof(C));
for(int i = 1; i <= 12; i++)
{
for(int j = 0; j <= i; j++)
{
if(j == 0 || j == i)
C[i][j] = 1;
else if(j == 1)
C[i][j] = i;
else
C[i][j] = C[i-1][j-1] + C[i-1][j];
}
}
}
long long cal(long long m)
{
long long ans = 0;
for(int i = 1; i < (1<<k); i++)
{
int cnt = 0;
long long mul = 1;
for(int j = 0; j < k; j++)
{
if(i&(1<<j))
{
cnt++;
mul = lcm(mul,a[j]);
}
}
if(cnt&1)
ans += C[k][cnt-1]*(m/mul);
else
ans -= cnt*(m/mul);
}
return ans;
}
int main()
{
int test;
init();
scanf("%d",&test);
while(test--)
{
scanf("%d %I64d",&k,&n);
for(int i = 0; i < k; i++)
{
scanf("%d",&a[i]);
}
long long low = 0,high = Max;
while(low <= high)
{
long long mid = (low + high)/2;
long long res = cal(mid);
if(res >= n)
high = mid-1;
else
low = mid+1;
}
printf("%I64d\n",low);
}
return 0;
}