http://acm.timus.ru/problem.aspx?space=1&num=1114
有n个盒子,两两种颜色的球,红球和篮球分别有a和b个,现在随意向盒子里放球,每个盒子可以放一种颜色,两种颜色或不放。问有多少种方法。
设dp[i][j][k]表示到第i个盒子还剩下j个红球和k个篮球,可以列出状态转移方程:dp[i][j][k] = ∑ ( dp[i-1][jj][kk] )( j <= jj <= a 且 k <= kk <= b)。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <bitset>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL __int64
//#define LL long long
#define ULL unsigned long long
#define eps 1e-9
#define PI acos(-1.0)
using namespace std;
ULL dp[25][20][20];
int main()
{
int n,A,B;
while(~scanf("%d %d %d",&n,&A,&B))
{
memset(dp,0,sizeof(dp));
dp[0][A][B] = 1;
ULL ans = 0;
for(int i = 1; i <= n; i++)
{
for(int j = 0; j <= A; j++)
{
for(int k = 0; k <= B; k++)
{
for(int jj = j; jj <= A; jj++)
{
for(int kk = k; kk <= B; kk++)
dp[i][j][k] += dp[i-1][jj][kk];
}
if(i == n )
ans += dp[i][j][k];
}
}
}
printf("%I64u\n",ans);
}
return 0;
}