深度学习
文章平均质量分 94
莫失莫忘Lawlite
github地址:https://github.com/lawlite19 欢迎Follow、Star、Fork!
个人网站:http://lawlite.me
展开
-
TensorFlow学习_02_CNN卷积神经网络_Mnist手写数字识别
github地址:https://github.com/lawlite19/MachineLearning_TensorFlow或者上一篇Tensorflow的博客:http://blog.csdn.net/u013082989/article/details/53510625七、手写数字识别_3_CNN卷积神经网络1、说明关于卷积神经网络CNN可以查看我的博客:http://blog.csd原创 2016-12-16 16:54:40 · 8404 阅读 · 0 评论 -
风格迁移 Style transfer
本文个人博客访问地址: 点击查看一、介绍将一张图片的艺术风格应用在另外一张图片上使用深度卷积网络CNN提取一张图片的内容和提取一张图片的风格, 然后将两者结合起来得到最后的结果二、 方法 - 我们知道 CNN 可以捕捉图像的高层次特征,如上图所示,内容图片经过CNN可以得到对应的图像表述(representation, 就是经过卷积操作的featu...原创 2018-03-01 13:45:15 · 13897 阅读 · 0 评论 -
阿里云GPU服务器上Torch安装与测试
本文个人博客访问地址: 点击查看一、介绍阿里云的GPU也有了竞价服务,每小时大概1块多,还是可以接受的主要想跑github上的一个论文代码,使用的GPU,(奈何实验室没有GPU), 本来我已经改成CPU版本的了,但是他训练好的模型是基于GPU的,所以还需要重新训练,结果非常的慢…包含以下内容: 购买竞价GPU通过SSH连接云服务器安装Torch、hdf5、cjson、loadcaffe原创 2017-12-25 21:40:29 · 7224 阅读 · 1 评论 -
论文记录-Pruning Filters For Efficient ConvNets
1、概述一些剪枝的操作主要是减少了全连接层的参数,全连接层的参数量占比最多(比如VGG-16中全连接层操作占了90%,计算量只占了不到1%), 但是主要的计算量集中在卷层操作论文就是提出了对卷积层进行剪枝操作,然后进行retrain,不会造成稀疏连接(像上篇论文一样,稀疏矩阵操作需要特殊的库等来处理)全连接层可以使用平均池化层来代替以减少参数量2、对Filters进行剪枝,以及Feature原创 2017-09-12 11:29:02 · 8775 阅读 · 2 评论 -
论文记录-Deep Compression:Compressing DeepNeural Networks With Pruning, Trained Quantization And Huffman
本文个人博客访问地址:点击查看1、概述压缩主要分为三个阶段:剪枝(pruning)、训练分层(trained quantization)以及 哈夫曼编码(Huffman coding)可以压缩35到49倍,并且不影响精度[模型压缩的主要用于还是能够用于小型的设备上,例如手机端等,比如Google的Mobile Net, 但是准确度肯定要比正常的电脑端训练的大网络低一些,在所难免][一般的训原创 2017-09-09 15:08:58 · 3226 阅读 · 0 评论 -
论文记录_MobileNets Efficient Convolutional Neural Networks for Mobile Vision Application
本文个人博客地址:点击查看Tensorflow 中的实现:点击查看Caffe 中的实现:点击查看1、概述Google在2017年提出的适用于手机端的神经网络模型主要使用了深度可分离卷积Depthwise Separable Convolution 将卷积核进行分解计算来减少计算量引入了两个超参数减少参数量和计算量 宽度乘数(Width Multiplier): [减少输入和输出的 ch原创 2017-09-13 19:49:30 · 13681 阅读 · 1 评论 -
深度学习(08)_RNN-LSTM循环神经网络-03-Tensorflow进阶实现
全部代码:点击这里查看本文个人博客地址:点击这里查看关于Tensorflow实现一个简单的二元序列的例子可以点击这里查看关于RNN和LSTM的基础可以查看这里这篇博客主要包含以下内容 训练一个RNN模型逐字符生成文本数据(最后的部分)使用Tensorflow的scan函数实现dynamic_rnn动态创建的效果使用multiple RNN创建多层的RNN实现Dropout和Layer原创 2017-06-24 18:29:31 · 17626 阅读 · 3 评论 -
深度学习(06)_循环神经网络RNN和LSTM_01
循环神经网络RNN和LSTM_01个人博客地址:http://lawlite.me/2017/06/14/RNN-%E5%BE%AA%E7%8E%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C-01/一、介绍1、什么是RNN传统的神经网络是层与层之间是全连接的,但是每层之间的神经元是没有连接的(其实是假设各个数据之间是独立的) 这种结构不善于处理序列化的问题。比原创 2017-06-16 15:05:32 · 2792 阅读 · 0 评论 -
深度学习(07)_RNN-循环神经网络-02-Tensorflow中的实现
关于基本的RNN和LSTM的概念和BPTT算法可以查看这里本文个人博客地址:http://lawlite.me/2017/06/16/RNN-%E5%BE%AA%E7%8E%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C-02Tensorflow%E4%B8%AD%E7%9A%84%E5%AE%9E%E7%8E%B0/参考文章: https://r2rt.com/原创 2017-06-19 16:49:43 · 19887 阅读 · 6 评论 -
深度学习Deep Learning(05):Batch Normalization(BN)批标准化
github地址:https://github.com/lawlite19/DeepLearning_Python四、Batch Normalization(BN)批标准化1、说明参考论文:http://jmlr.org/proceedings/papers/v37/ioffe15.pdf或者查看这里,我放在github上了:https://github.com/lawlite19/DeepL原创 2017-01-09 21:37:00 · 7888 阅读 · 0 评论 -
深度学习Deep Learning(04):权重初始化问题2_ReLu激励函数
github地址:https://github.com/lawlite19/DeepLearning_Python三、权重初始化问题2_ReLu激励函数1、说明参考论文:https://arxiv.org/pdf/1502.01852v1.pdf或者查看这里,我放在github上了:https://github.com/lawlite19/DeepLearning_Python/blob/ma原创 2017-01-09 15:20:17 · 4201 阅读 · 1 评论 -
深度学习Deep Learning(03):权重初始化问题1_Sigmoid\tanh\Softsign激励函数
二、权重初始化问题1_Sigmoid\tanh\Softsign激励函数github地址:https://github.com/lawlite19/DeepLearning_Python1、说明参考论文:http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf或者查看这里,我放在github上了:https://github.原创 2016-12-20 22:42:28 · 10720 阅读 · 0 评论 -
深度学习Deep Learning(02):CNN推导
8、CNN公式推导(1)说明参考论文:http://cogprints.org/5869/1/cnn_tutorial.pdf或者在这里查看:https://github.com/lawlite19/MachineLearning_TensorFlow/tree/master/paper/cnn_tutorial.pdfBP神经网络之前写过推导,可以查看这里的第三部分BP神经网络:https:原创 2016-12-18 17:18:41 · 1849 阅读 · 1 评论 -
深度学习Deep Learning(01)_CNN卷积神经网络
深度学习 Deep Learninggithub地址:https://github.com/lawlite19/DeepLearning_Python有关神经网络的部分可以查看这里的BP神经网络的部分:https://github.com/lawlite19/MachineLearning_Python一、CNN卷积神经网络参考文章:http://cs231n.github.io/convo原创 2016-12-15 17:49:30 · 35446 阅读 · 14 评论 -
Triplet-Loss原理及其实现、应用
本文个人博客地址: 点击查看欢迎下面留言交流一、 Triplet loss1、介绍Triplet loss最初是在 FaceNet: A Unified Embedding for Face Recognition and Clustering 论文中提出的,可以学到较好的人脸的embedding为什么不适用 softmax函数呢,softmax最终的类别数是确定的,而Triple...翻译 2018-10-30 10:03:46 · 116787 阅读 · 36 评论