论文记录_MobileNets Efficient Convolutional Neural Networks for Mobile Vision Application

1、概述

  • Google2017年提出的适用于手机端的神经网络模型
  • 主要使用了深度可分离卷积Depthwise Separable Convolution 将卷积核进行分解计算来减少计算量
  • 引入了两个超参数减少参数量和计算量
    • 宽度乘数(Width Multiplier): [减少输入和输出的 channels ]
    • 分辨率乘数(Resolution Multiplier):[减少输入输出的 feature maps 的大小]

2、深度可分离卷积(Depthwise Separable Convolution

  • 可以将一个标准卷积核分成一个深度卷积depthwise convolution 和 一个1X1的卷积(叫作逐点卷积pointwise convolution)。如下图所示

depthwise separable convolution

2.1 标准卷积

  • 标准的卷积层是将维度为 D F ×D F ×M  的输入层转化为维度为 D G ×D G ×N  [ 上篇论文中也有提到]
    • D F   是输入feature map的长和宽,M 是输入的通道数(channels
    • D G   是输出feature map的长和宽,N 是输出的通道数
  • 假设卷积核filter的大小是 D k ×D k   ,则标准卷积的计算量是
    D k D k M
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值