1、概述
Google
在2017
年提出的适用于手机端的神经网络模型- 主要使用了深度可分离卷积
Depthwise Separable Convolution
将卷积核进行分解计算来减少计算量 - 引入了两个超参数减少参数量和计算量
- 宽度乘数(
Width Multiplier
): [减少输入和输出的channels
] - 分辨率乘数(
Resolution Multiplier
):[减少输入输出的feature maps
的大小]
- 宽度乘数(
2、深度可分离卷积(Depthwise Separable Convolution
)
- 可以将一个标准卷积核分成一个深度卷积
depthwise convolution
和 一个1X1
的卷积(叫作逐点卷积pointwise convolution
)。如下图所示
2.1 标准卷积
- 标准的卷积层是将维度为 D F ×D F ×M 的输入层转化为维度为 D G ×D G ×N [ 上篇论文中也有提到]
- D F 是输入
feature map
的长和宽,M 是输入的通道数(channels
) - D G 是输出
feature map
的长和宽,N 是输出的通道数
- D F 是输入
- 假设卷积核
filter
的大小是 D k ×D k ,则标准卷积的计算量是D k ⋅D k ⋅M