hdu 3535 AreYouBusy 混合背包

个人感觉思路一点不好想,看了网上的总算是懂了,也自己敲了敲,懂思路就很简单了

题意:

给你n种工作,给你T的时间去做它们。给你m和s,说明这种工作有m件事可以做,它们是s类的工作(s=0,1,2,s=0说明这m件事中最少得做一件,s=1说明这m件事中最多只能做一件,s=2说明这m件事你可以做也可以不做)。再给你ci和gi代表你做这件事要用ci的时间,能获得gi的快乐值。求在T的时间内你能获得的最大快乐值。


思路:

经典混合背包

     题目给了很多类别的物品。用 数组dp[i][j],表示第i组,时间为j时的快乐值。每得到一组工作就进行一次DP,所以dp[i]为第i组的结果。

 

  第一类,至少选一项,即必须要选,那么在开始时,对于这一组的dp的初值,应该全部赋为负无穷,这样才能保证不会出现都不选的情况。

状态转移方程:

dp[i][j]=max(dp[i][j],max(dp[i][j-w[x]]+p[x],dp[i-1][j-w[x]]+p[x]));

 

dp[i][j]: 是不选择当前工作;

dp[i-1][j-w[x]]+p[x]: 第一次在本组中选物品,由于开始将该组dp赋为了负无穷,所以第一次取时,必须由上一组的结果推知,这样才能保证得到全局最优解;

dp[i][j-w[x]]+p[x]:表示选择当前工作,并且不是第一次取;

 

  第二类,最多选一项,即要么不选,一旦选,只能是第一次选。

状态转移方程:

dp[i][j]=max(dp[i][j],dp[i-1][j-w[x]]+p[x]);

由于要保证得到全局最优解,所以在该组DP开始以前,应该将上一组的DP结果先复制到这一组的dp[i]数组里,因为当前组的数据是在上一组数据的基础上进行更新的。

 

     第三类,任意选,即不论选不选,选几个都可以。

状态转移方程为:

dp[i][j]=max(dp[i][j],dp[i][j-w[x]]+p[x]);

同样要保证为得到全局最优解,先复制上一组解,数据在当前组更新。

 

Description

Happy New Term! 
As having become a junior, xiaoA recognizes that there is not much time for her to AC problems, because there are some other things for her to do, which makes her nearly mad. 
What's more, her boss tells her that for some sets of duties, she must choose at least one job to do, but for some sets of things, she can only choose at most one to do, which is meaningless to the boss. And for others, she can do of her will. We just define the things that she can choose as "jobs". A job takes time , and gives xiaoA some points of happiness (which means that she is always willing to do the jobs).So can you choose the best sets of them to give her the maximum points of happiness and also to be a good junior(which means that she should follow the boss's advice)? 
 

Input

There are several test cases, each test case begins with two integers n and T (0<=n,T<=100) , n sets of jobs for you to choose and T minutes for her to do them. Follows are n sets of description, each of which starts with two integers m and s (0<m<=100), there are m jobs in this set , and the set type is s, (0 stands for the sets that should choose at least 1 job to do, 1 for the sets that should choose at most 1 , and 2 for the one you can choose freely).then m pairs of integers ci,gi follows (0<=ci,gi<=100), means the ith job cost ci minutes to finish and gi points of happiness can be gained by finishing it. One job can be done only once.
 

Output

One line for each test case contains the maximum points of happiness we can choose from all jobs .if she can’t finish what her boss want, just output -1 .
 

Sample Input

       
       
3 3 2 1 2 5 3 8 2 0 1 0 2 1 3 2 4 3 2 1 1 1 3 4 2 1 2 5 3 8 2 0 1 1 2 8 3 2 4 4 2 1 1 1 1 1 1 0 2 1 5 3 2 0 1 0 2 1 2 0 2 2 1 1 2 0 3 2 2 1 2 1 1 5 2 8 3 2 3 8 4 9 5 10
 

Sample Output

       
       
5 13 -1 -1
 

二维数组:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define INF 1<<29
using namespace std;
int w[101],p[101];
int dp[101][101];
int main()
{
    int n,T;
    while(~scanf("%d %d",&n,&T))
    {
        memset(dp,0,sizeof(dp));
        for(int i=1; i<=n; i++)
        {
            int m,flag;
            scanf("%d %d",&m,&flag);
            for(int x=1; x<=m; x++)
                scanf("%d %d",&w[x],&p[x]);
            if(flag==0)
            {
                for(int j=0; j<=T; j++)
                    dp[i][j]=-INF;
                for(int x=1; x<=m; x++)
                    for(int j=T; j>=w[x]; j--)
                        dp[i][j]=max(dp[i][j],max(dp[i-1][j-w[x]]+p[x],dp[i][j-w[x]]+p[x]));
            }
            else  if(flag==1)
            {
                for(int j=0; j<=T; j++)
                    dp[i][j]=dp[i-1][j];
                for(int x=1; x<=m; x++)
                    for(int j=T; j>=w[x]; j--)
                        dp[i][j]=max(dp[i][j],dp[i-1][j-w[x]]+p[x]);
            }
            else
            {
                for(int j=0; j<=T; j++)
                    dp[i][j]=dp[i-1][j];
                for(int x=1; x<=m; x++)
                    for(int j=T; j>=w[x]; j--)
                        dp[i][j]=max(dp[i][j],dp[i][j-w[x]]+p[x]);
            }
        }
        dp[n][T]=max(dp[n][T],-1);
        printf("%d\n",dp[n][T]);
    }
    return 0;
}
 


滚动数组解法————>>>滚动数组解释连接点击打开链接

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define INF 0x3f3f3f3f
using namespace std;
int w[101],p[101];
int dp[101],tem[101];
int main()
{
    int n,T;
    while(~scanf("%d %d",&n,&T))
    {
        memset(dp,0,sizeof(dp));
        for(int i=1; i<=n; i++)
        {
            int m,flag;
            scanf("%d %d",&m,&flag);
            for(int x=1; x<=m; x++)
                scanf("%d %d",&w[x],&p[x]);
            if(flag==0)
            {
                for(int j=0; j<=T; j++)
                    {
                        tem[j]=dp[j];
                        dp[j]=-INF;
                    }
                for(int x=1; x<=m; x++)
                    for(int j=T; j>=w[x]; j--)
                        dp[j]=max(dp[j],max(dp[j-w[x]]+p[x],tem[j-w[x]]+p[x]));
            }
            else  if(flag==1)
            {
                for(int j=0; j<=T; j++)
                    {
                        tem[j]=dp[j];
                    }
                for(int x=1; x<=m; x++)
                    for(int j=T; j>=w[x]; j--)
                        dp[j]=max(dp[j],tem[j-w[x]]+p[x]);
            }
            else
            {
                for(int x=1; x<=m; x++)
                    for(int j=T; j>=w[x]; j--)
                        dp[j]=max(dp[j],dp[j-w[x]]+p[x]);
            }
        }
        dp[T]=max(dp[T],-1);
        printf("%d\n",dp[T]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值