梯度反方向是函数值局部下降最快的方向

很多机器学习的训练算法都是利用梯度下降,朝着梯度的反方向变动,函数值下降最快。

导数

导数可以表示函数曲线上的切线斜率。 除了切线的斜率,导数还表示函数在该点的变化率



导数代表了在自变量变化趋于无穷小的时候,函数值的变化与自变量变化的比值代表了导数,几何意义有该点的切线。物理意义有该时刻的(瞬时)变化率。

在一元函数中,只有一个自变量变动,也就是说只存在一个方向的变化率,这也就是为什么一元函数没有偏导数的原因。

偏导数

偏导数至少涉及到两个自变量,以两个自变量为例,z=f(x,y) . 从导数到偏导数,也就是从曲线来到了曲面. 曲线上的一点,其切线只有一条。但是曲面的一点,切线有无数条。

偏导数是指的是多元函数沿坐标轴的变化率。

f_{x} (x,y)指的是函数在y方向不变,函数值沿着x轴方向的变化率

f_{y} (x,y)指的是函数在x方向不变,函数值沿着y轴方向的变化率

  • 偏导数f_{x} (x_{0},y_{0} )就是曲面被平面y=y_{0}所截得的曲面在点M_{0}处的切线M_{0}T_{x}对x轴的斜率
  • 偏导数f_{y} (x_{0},y_{0} )就是曲面被平面x=x_{0}所截得的曲面在点M_{0}处的切线M_{0}T_{y}对y轴的斜率

偏导数指的是多元函数沿坐标轴的变化率,但是我们往往很多时候要考虑多元函数沿任意方向的变化率,那么就引出了方向导数.

方向导数

f(x,y)为一个二元函数,u =cos\theta i+sin\theta j为一个单位向量,如果下列的极限值存在

\lim_{t \rightarrow 0}{\frac{f(x_{0}+tcos\theta ,y_{0}+tsin\theta )-f(x_{0},y_{0})}{t} }此方向导数记为D_{u}f

则称这个极限值是f沿着u方向的方向导数,那么随着\theta的不同,我们可以求出任意方向的方向导数.

简化计算如下:

A=(f_{x}(x,y) ,f_{y}(x,y)),I=(cos\theta ,sin\theta )

那么我们可以得到:

D_{u}f(x,y)=A\bullet I=\left| A \right| *\left| I \right| cos\alpha(\alpha为向量A与向量I之间的夹角)

那么此时如果D_{u}f(x,y)要取得最大值,也就是当\alpha为0度的时候,也就是向量I(这个方向是一直在变,在寻找一个函数变化最快的方向)与向量A(这个方向当点固定下来的时候,它就是固定的)平行的时候,方向导数最大.方向导数最大,也就是单位步伐,函数值朝这个反向变化最快.

函数值下降最快的方向就是和A向量相同的方向.那么此时我把A向量命名为梯度(当一个点确定后,梯度方向是确定的),也就是说明了为什么梯度方向是函数变化率最大的方向了!!!


参考:

[1] https://zhuanlan.zhihu.com/p/24913912

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值