- 在给定置信度下,判断检测到给定值时所需要的样本量;也能计算在某样本量内能检测到给定效应值的概率
- 功效是1-二类错误,1-β,看做真实效应发生的概率
- 效应值是在备选或研究假设下效应的量
- 对于每个函数,用户设定(样本大小n,显著性水平α,功效,效应值)中的三个量,第四个量可以计算出来
- 功效分析函数
- t检验:pwr::pwr.t.test(n,d,sig.level,power,type,alternative)
- n为每组样本大小
- d为效应值,即标准化均值的差
- sig.level显著性水平
- power功效水平
- type检验类型:
- 双样本t检验two.sample
- 单样本t检验one.sample
- 分组样本t检验paired
- alternative:双侧two.sided,单侧less、greater
- n不相等的t检验:pwr.t2n.test(n1=,n2=,...)
- 方差分析pwr.anova.test(k,n,f,sig.level,power)
- k是组个数
- n是各组样本量
- f是效应值,方差分析的衡量量
- 相关性pwr.r.test(n,r,sig.level,power,alternative)
- r是相关性大小
- 线性模型pwr.f2.test(u,v,f2,sig.level,power)
- u分子自由度
- v分母自由度
- f2是效应值</
- t检验:pwr::pwr.t.test(n,d,sig.level,power,type,alternative)
R教材8 功效分析
最新推荐文章于 2024-09-16 01:00:00 发布
这篇博客介绍了R语言中进行功效分析的方法,包括t检验、方差分析、相关性检验、线性模型和比例检验等。通过设定样本大小、显著性水平、功效和效应值,计算所需信息,帮助研究人员确定实验设计和分析策略。
摘要由CSDN通过智能技术生成