机器学习训练算法八(阻尼牛顿法)

14 篇文章 0 订阅
11 篇文章 2 订阅

连续函数的最优化方法-阻尼牛顿法

1、介绍

由于原始牛顿下降法(见公式 29)中没有步长因子,对于非二次型目标函数,有时会使函数值上升,即出现 F ( X k + 1 ) > F ( X k ) F(X_{k+1})>F(X_{k}) F(Xk+1)>F(Xk)的情况,这表明原始牛顿下降法不能保证函数值稳定的下降。

2、数学原理

为了在获得牛顿方向后,还能够保证每一次的迭代是朝着函数值下降的方向移动,对公式 29添加步长因子 λ \lambda λ 得到如下形式的阻尼牛顿算法:
X k + 1 = d e f X k + λ × N ( X k ) ( 公 式 30 ) X_{k+1}\stackrel{\mathrm{def}}{=} X_{k}+\lambda \times N(X_k) \qquad (公式30) Xk+1=defXk+λ×N(Xk)(30)
将公式 30 的结果代入公式 10 可推得:
K ( λ ) = d e f F ( X k + λ × N ( X k ) ) ( 公 式 31 ) K(\lambda)\stackrel{\mathrm{def}}{=} F(X_{k}+\lambda \times N(X_k)) \qquad (公式31) K(λ)=defF(Xk+λ×N(Xk))(31)
公式 30 的最优步长因子 λ k \lambda_k λk是当函数 K ( λ ) K(\lambda) K(λ)取得最小值的时候,自变量 λ \lambda λ的取值:
λ k = d e f a r g   min ⁡ λ ∈ R   K ( λ ) ( 公 式 32 ) \lambda_k \stackrel{\mathrm{def}}{=} arg\ \underset{\lambda \in R}{\min}\ K(\lambda) \qquad (公式32) λk=defarg λRmin K(λ)(32)
由公式 30 和公式 32 可推得目标函数 F ( X k ) F(X_{k}) F(Xk)的最优化迭代公式:
X k + 1 = d e f X k + λ k × N ( X k ) ( 公 式 33 ) X_{k+1}\stackrel{\mathrm{def}}{=} X_{k}+\lambda_k \times N(X_k) \qquad (公式33) Xk+1=defXk+λk×N(Xk)(33)

3、Matlab程序

链接地址

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值