牛顿法(Newton Methods)、阻尼牛顿法和拟牛顿法

X = ( x 1 , x 2 , ⋯   , x N ) T ∈ R N X=(x_1,x_2,\cdots,x_N)^T \in {\bf R}^N X=(x1,x2,,xN)TRN,目标函数 f : R N → R f:{\bf R}^N \rightarrow {\bf R} f:RNR f f f凸函数,且二阶连续可微,我们希望求解如下的无约束极小化问题:

min ⁡ X f ( X ) \min_X f(X) Xminf(X)

1 牛顿法

1.1 N = 1 N=1 N=1 时的迭代公式

为了简单起见,这里先考虑 N = 1 N=1 N=1 的情形,此时目标函数 f ( X ) f(X) f(X) 变为 f ( x ) f(x) f(x)

牛顿法的基本思想是: 在现有极小点估计值得附近对 f ( x ) f(x) f(x) 做二阶泰勒展开,进而找到极小点的下一个估计值。假设 x k x_k xk 是当前的极小点估计值,则:

φ ( x ) = f ( x k ) + f ′ ( x k ) ( x − x k ) + 1 2 f ′ ′ ( x k ) ( x − x k ) 2 \varphi (x) = f(x_k)+f'(x_k)(x-x_k)+\frac{1}{2}f''(x_k)(x-x_k)^2 φ(x)=f(xk)+f(xk)(xxk)+21f(xk)(xxk)2

表示 f ( x ) f(x) f(x) x k x_k xk 附近的二阶泰勒展开式(其中略去了关于 x − x k x-x_k xxk 的高阶项)。因为我们的目标是求最值,由极值的必要条件可知, φ ( x ) \varphi (x) φ(x) 应该满足:

φ ′ ( x ) = f ′ ( x k ) + f ′ ′ ( x k ) ( x − x k ) = 0 \varphi '(x) = f'(x_k)+f''(x_k)(x-x_k)=0 φ(x)=f(xk)+f(xk)(xxk)=0

从而有:

x = x k − f ′ ( x k ) f ′ ′ ( x k ) x=x_k - \frac{f'(x_k)}{f''(x_k)} x=xkf(xk)f(xk)

于是,若给定初始值 x 0 x_0 x0,则可以按照下面的迭代公式

x k + 1 = x k − f ′ ( x k ) f ′ ′ ( x k ) ,   k = 0 , 1 , ⋯ x_{k+1}=x_k - \frac{f'(x_k)}{f''(x_k)}, \ k=0,1,\cdots xk+1=xkf(xk)f(xk), k=0,1,

产生序列 { x k } \{x_k\} { xk} 来逼近 f ( x ) f(x) f(x) 的极小值点。

在一定的条件下, { x k } \{x_k\} { xk} 可以收敛到 f ( x ) f(x) f(x) 的极小值点。

1.2 N > 1 N>1 N>1 时的迭代公式

N > 1 N>1 N>1 时,二阶泰勒展示式写作:

φ ( X ) = f ( X k ) + ∇ f ( X k ) ⋅ ( X − X k ) + 1 2 ⋅ ( X − X k ) T ⋅ ∇ 2 f ( X k ) ⋅ ( X − X k ) \varphi (X) = f(X_k)+\nabla f(X_k)\cdot (X-X_k)+\frac{1}{2} \cdot (X-X_k)^T \cdot \nabla ^2 f(X_k) \cdot (X-X_k) φ(X)=f(Xk)+f(Xk)(XXk)+21(XXk)T2f(Xk)(XXk)

其中, ∇ f \nabla f f f f f 的梯度向量, ∇ 2 f

  • 8
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值