题目:
输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数。例如输入12,从1到12这些整数中包含1的数字有1, 10, 11和12;1一共出现了5次。
第一思路:
利用for循环累加从1到n中每个整数出现1的次数。判断每个整数是否出现1,利用对整数每次对10求余,判断整数的个位数字是不是1。如果这个数字大于10,除以10之后再判断个位数字是不是1。
代码实现:
/**
* 求1到n中的每个整数中1出现的总共有多少次
*/
public static int numberOf1Between1AndN(int n){
if(n<0){
return 0;
}
int count = 0;
for (int i = 1; i <= n; i++) {
count += numberOf1(i);
}
return count;
}
/**
* 求每个整数中1出现的次数
* @param n
* @return
*/
private static int numberOf1(int n) {
int count = 0;
while(n>0){
if(n % 10 == 1){
++count;
}
n = n / 10;
}
return count;
}
最优思路:从数字规律着手,提高时间效率
1:如果第i位(从低位向高位开始)上的数字是0,那么第i位可能出现1的次数仅由更高位决定(如果没有高位,则视高位为0),等于更高位数字*当前位数的权重10^(i-1);
2:如果第i位上的数字为1,则第i位上可能出现1的次数不仅受更高位影响还受低位影响(如果没有低位,则视低位为0),等于更高位数字*当前位数的权重10^(i-1) + (低位数字+1);
3:如果第i位上的数字大于1,则第i位上可能出现1的次数仅由更高位决定(如果没有高位,则视高位为0),等于(更高位数字+1)*当前位数的权重10^(i-1)。
注:(这里的 X∈[1,9] ,因为 X=0 不符合下列规律,需要单独计算)。
首先要知道以下的规律:
从 1 至 10,在它们的个位数中,任意的 X 都出现了 1 次。
从 1 至 100,在它们的十位数中,任意的 X 都出现了 10 次。
从 1 至 1000,在它们的百位数中,任意的 X 都出现了 100 次。
依此类推,从 1 至 10^ i ,在它们的左数第二位(右数第 i 位)中,任意的 X 都出现了 10^(i-1) 次。
以21354为例,寻找1出现的次数:
个位:从1至21350中包含了2135个10,因此1出现了2135次,21351,21352,21353,21354其中21351包含了一个1,故个位出现1的次数为:2135*10(1-1) + 1 = 2136次;
公式:( 2135+1)* 10^(1-1) = 2136;
十位:从1到21300中包含了213个100,因此1出现了213 * 10^(2-1) = 2130次,剩下的数字是21301到21354,它们的十位数字是5 > 1;因此它会包含10个1;故总数为2130 + 10 = 2140次;
公式:(213 + 1)* 10^(2-1) = 2140次;
百位:从1到21000中包含了21个1000,因此1出现了21 * 10^(3-1) = 2100次,剩下的数字是21001到21354,它们的百位数字是3 > 1;因此它会包含100个1;故总数为2100 + 100 = 2200次;
公式:(21 + 1)* 10^(3-1) = 2200次;
千位:从1到20000中包含了2个10000,因此1出现了2 * 10^(4-1) = 2000次,剩下的数字是20001到21354,它们的千位数字是1 = 1;情况稍微复杂些,354 + 1 = 355;故1的总数为2000 + 355 = 2355次;
公式:2 * 10^(4-1) + 354 + 1 = 2355次;
万位:万位是2 > 1,没有更高位;因此1出现的次数是1 * 10^(5-1) = 10000次;
公式:(0 + 1)*10^(5-1) = 10000次;
故总共为:2136+2140+2200+2355+10000=18831次;
故总结:
- 1、取第 i 位左边的数字(高位),乘以 10 ^(i−1) ,得到基础值 a 。
- 2、取第 i 位数字,计算修正值:
- 1、如果大于 X,则结果为 a+ 10 ^(i−1) 。
- 2、如果小于 X,则结果为 a 。
- 3、如果等 X,则取第 i 位右边(低位)数字,设为 b ,最后结果为 a+b+1 。
故代码实现:
public class Main1 {
public int numberOf1Between1AndN(int n, int x){
if(n < 0 || x < 1 || x > 9){
return 0;
}
int curr, low, temp, high = n, i = 1, total = 0;
while(high!=0){
high = n / (int)Math.pow(10, i); //获取第i位的高位
temp = n % (int)Math.pow(10, i); //
curr = temp / (int)Math.pow(10, i-1); //获取第i位
low = temp%(int)Math.pow(10, i-1); //获取第i位的低位
if(curr == x){ //等于x
total += high*(int)Math.pow(10, i-1)+ low + 1;
}else if(curr < x){ //小于x
total += high*(int) Math.pow(10, i-1);
}else{ //大于x
total += (high + 1) * (int)Math.pow(10, i-1);
}
i++;
}
return total;
}
public static void main(String[] args) {
Main1 m1 = new Main1();
int nums = m1.numberOf1Between1AndN(21354, 1);
System.out.println(nums);
}
}
小结:优中选优是拿下offer的王道。