
深度学习
文章平均质量分 94
本专栏主要介绍深度学习框架、原理和实战
紫雾凌寒
公众号:紫雾凌寒。8年互联网大厂研发经验,关于软件开发探讨可联系我,专注分享人工智能、移动开发、学习成长。
路漫漫其修远兮,吾将上下而求索。
展开
-
自然语言处理|神经符号系统如何融合规则与统计?
本文论述了神经符号系统的应用将扩展至更多领域。在教育领域,系统通过深度学习分析学生学习数据,结合符号推理表示教育知识和教学策略,精准识别学习难点和需求,为学生提供个性化学习方案和辅导。实现因材施教,提升教育质量。例如,系统可根据学生的数学测试数据,推荐针对性练习,解决特定知识点问题。原创 2025-04-02 09:00:00 · 1013 阅读 · 0 评论 -
自然语言处理|如何用少样本技术提升低资源语言处理?
本文论述了少样本跨语言迁移技术在低资源语言处理领域显示出显著潜力,未来将在技术和应用方面进一步发展。在技术方向上,深度学习的进步将推动模型架构和训练算法的优化。例如,Transformer 架构变体可能提升语言特征捕捉和跨语言迁移效率。结合强化学习和自监督学习,模型能更有效利用未标注数据,增强泛化能力和适应性。原创 2025-04-01 12:59:18 · 1017 阅读 · 0 评论 -
代码生成模型 Claude-3.7:技术、应用与未来
本文论述了Claude-3.7 基于 Claude-3.5 Sonnet 的进步,在 代码生成质量、安全性 和 效率 上表现优异。它为开发者提供了强大工具,加速了开发流程,同时降低了技术门槛。教育领域受益于其教学能力,企业与开源项目则因效率提升而获利。然而,其局限性不容忽视。复杂项目的支持不足、数据依赖性及高计算成本需用户权衡。伦理问题(如版权和安全)和社会影响(如就业变化)也需行业关注。未来,Claude-3.7 的迭代将推动技术融合与范式转变。开发者需适应新角色,行业需建立规范以平衡创新与责原创 2025-03-31 14:07:30 · 1089 阅读 · 1 评论 -
代码生成模型 StarCoder2:AI 赋能代码智能的未来
本文论述了StarCoder 凭借 150 亿参数的超大规模、多语言支持和企业级优化,已成为代码生成领域的标杆模型。随着 DS-1000 等垂直领域优化和边缘部署能力的提升,其在金融、教育、开源社区等场景的应用将持续深化。开发者可通过 GitHub 获取完整工具链,共同推动代码智能的革新进程。原创 2025-03-31 13:35:26 · 938 阅读 · 0 评论 -
探索 Codex:代码生成的技术前沿
本文论述了Codex 在代码大模型领域表现出色,代码生成能力强、支持多语言,为软件开发带来便利与效率提升,开启全新代码时代。不过它也存在面对复杂任务时的局限性、潜在安全隐患和偏见问题,需谨慎对待。但随着技术进步完善,这些问题有望解决。对开发者来说,Codex 是强大工具和提升自身能力的契机,应积极探索应用,利用其优势提高开发效率,同时提升自身编程能力和综合素质,与 Codex 共赴代码未来,见证人工智能辅助编程新时代辉煌。原创 2025-03-29 15:00:00 · 1166 阅读 · 1 评论 -
自然语言处理|思维链(CoT)技术:AI 是如何推理复杂问题的?
本文论述了思维链(CoT)技术 是 AI 领域重要创新,能模拟人类推理,分解复杂问题,提升模型在复杂任务上的表现与可解释性。它虽面临依赖大模型、可能产生幻觉、提示设计复杂等挑战,但随着技术发展,构建方法会更智能自动化,与模型结合更优化。该技术在多领域有巨大应用潜力,有望在医疗、金融等更多领域广泛应用,推动 AI 迈向更高级阶段,对 AI 未来影响深远,值得持续关注与深入研究。原创 2025-03-29 08:00:00 · 1581 阅读 · 0 评论 -
自然语言处理|人工智能如何革新作文批改:技术全解析
本文论述了作文自动批改技术作为教育科技领域的创新成果,正改变传统作文教学格局。它融合自然语言处理等技术,经数据采集、模型训练等步骤打造出批改系统。在实际应用中,该技术于学校和在线教育平台展现巨大价值,提高批改效率、保证评分客观、提供个性化反馈。不过,它目前也面临挑战,如评估创造性思维不足、无法替代教师人文关怀等。但随着多模态融合等技术发展趋势,未来有望与教师教学紧密结合,推动教育创新,为学生创造优质学习体验。原创 2025-03-28 15:00:00 · 1226 阅读 · 0 评论 -
自然语言处理|高效法律助手:AI如何解析合同条款?
本文论述了法律 AI 合同条款智能解析方案以其在效率、准确性和风险防控方面的显著优势,为法律行业带来了前所未有的变革。它打破了传统人工审查合同的局限,极大地提高了合同审查的效率和质量,在企业法务、律师事务所、金融机构等众多领域展现出广阔的应用前景 。尽管目前该方案在数据质量、算法可解释性和法律责任界定等方面面临挑战,但随着技术的不断进步和相关法律法规的逐步完善,这些问题有望得到有效解决。未来,法律 AI 合同条款智能解析方案将不断创新发展,在更多领域发挥重要作用,推动法律行业朝着智能化、高效化的方向迈进原创 2025-03-28 09:55:38 · 873 阅读 · 0 评论 -
自然语言处理|金融舆情解析:智能事件抽取与风险预警之道
本文论述了金融舆情事件抽取与风险预警系统在金融市场至关重要,通过先进技术对海量金融舆情数据实时监测、抽取和分析,为金融机构和投资者提供风险预警,助其决策、降低损失,各环节构成高效智能的风险防范体系。实际案例显示该系统成效显著,助力金融机构应对风险。但随着金融市场和技术发展,系统面临数据质量、模型准确性、隐私保护和数据安全等挑战,这也带来发展机遇,促使技术升级完善。原创 2025-03-27 15:00:00 · 1653 阅读 · 0 评论 -
自然语言处理|智能客服核心:对话状态跟踪(DST)技术解析
本文论述了对话状态跟踪(DST)是智能客服核心技术,在理解用户意图、维护对话上下文方面作用关键。它通过解析用户输入、更新与表示状态及推理,让智能客服系统能更好与用户交互,提供准确连贯服务。DST 虽在多领域成果显著,但面临语义理解复杂、数据稀疏与噪声、多领域适应等挑战。可采用改进模型算法、数据增强技术、迁移学习和多任务学习等策略提升其性能与泛化能力。原创 2025-03-27 09:31:15 · 1348 阅读 · 0 评论 -
自然语言处理|CLIP 的双编码器架构是如何优化图文关联的?
本文论述了CLIP 通过革命性的对比学习框架,重塑了多模态对齐的技术范式。其零样本能力和泛化性能,为跨模态检索、生成、分类等任务提供了高效解决方案。随着模型轻量化和领域适配技术的发展,CLIP 正在推动多模态 AI 进入大规模工业化应用阶段,开启智能交互的新篇章。原创 2025-03-26 14:00:00 · 1067 阅读 · 1 评论 -
自然语言处理 | 长文本处理难题怎么解?Longformer 给出了什么答案?
本文论述了Longformer 通过创新的注意力机制,成功突破了传统 Transformer 在长文本处理上的瓶颈,为长文本处理提供了高效且实用的解决方案。它的出现,使得我们能够更加深入地分析和理解大规模的文本数据,在多个领域展现出巨大的应用潜力。原创 2025-03-26 09:05:15 · 967 阅读 · 0 评论 -
自然语言处理|超长上下文分析,Transformer-XL强在哪里?
本文论述了Transformer-XL 通过段级循环机制和相对位置编码的创新,为长文本处理开辟了全新路径。其在语言建模、文本生成等任务中的卓越表现,标志着自然语言处理进入超长上下文时代。随着技术的持续演进,Transformer-XL 及其衍生模型有望在更多领域实现突破性应用。原创 2025-03-25 10:49:15 · 892 阅读 · 0 评论 -
大模型压缩实战指南:低秩分解技术深度解析与应用
本文论述了低秩分解作为大模型压缩的核心技术,在保持模型性能的同时显著降低资源消耗。通过深度理解算法原理、掌握工程实践技巧,并结合具体场景进行优化,开发者可以有效解决大模型部署难题。未来,随着算法与硬件的协同进化,低秩分解技术将在更多领域发挥关键作用。原创 2025-03-25 07:00:00 · 1113 阅读 · 1 评论 -
大模型瘦身秘籍:知识蒸馏全解析
本文论述了知识蒸馏是一种强大的模型压缩技术,通过将大型教师模型知识迁移到小型学生模型,在多领域有重要价值。它利用教师 - 学生模型架构、软目标、温度参数和损失函数实现知识传递。实现方法包括软标签蒸馏、特征蒸馏、注意力蒸馏和多教师蒸馏。在自然语言处理、计算机视觉和语音识别等场景,知识蒸馏成效显著,如 DistilBERT 在自然语言处理中以小模型规模实现接近 BERT 的性能等。知识蒸馏优势为模型压缩、提升推理效率和增强可解释性,但也面临知识提取难、性能平衡挑战和架构选择困难等问题。原创 2025-03-24 09:31:54 · 527 阅读 · 1 评论 -
自然语言处理|模型太大怎么办?探秘模型剪枝技术
本文论述了模型剪枝是模型压缩技术关键部分,能有效解决深度学习模型规模与复杂度问题。通过去除冗余参数和结构,它精简了模型,降低计算成本与存储需求,提升推理速度和泛化能力。在图像识别、自然语言处理等领域,模型剪枝应用价值巨大。虽面临避免性能下降、确定剪枝参数、硬件适配等挑战,但随着与其他技术融合、智能算法发展及与硬件协同设计推进,其未来潜力无限。原创 2025-03-24 09:12:54 · 772 阅读 · 0 评论 -
AI模型太大怎么办?模型压缩四大方法了解一下
本文论述了模型压缩作为深度学习领域的关键技术,通过 量化、剪枝、知识蒸馏和低秩分解 等方法,有效减少模型的存储空间和计算成本。未来,模型压缩技术有望在探索有效算法、结合新兴硬件与计算技术、拓展应用领域等方向取得突破。人工智能领域研究者和开发者应关注其发展,积极探索应用新方法。希望本文能为模型压缩技术学习和实践提供参考,期待其未来更多突破创新。原创 2025-03-23 09:59:27 · 1101 阅读 · 0 评论 -
自然语言处理|Adapter:大模型微调的高效之道
本文论述了:Adapter 技术作为参数高效微调的重要创新,在大模型微调领域展现出了独特的优势和广阔的应用前景。通过在预训练模型中插入少量的 Adapter 模块,它成功解决了传统全量微调面临的计算资源消耗大、过拟合风险高以及训练时间长等问题,使得大模型能够在更经济高效的方式下适应各种下游任务 。原创 2025-03-21 14:41:42 · 1161 阅读 · 0 评论 -
自然语言处理|LoRA:让大模型微调更简单更高效
本文论述了LoRA 技术凭借低秩矩阵分解方法,为大模型微调带来变革,有效解决传统全量参数微调高成本、高资源消耗和易过拟合问题,在多领域展现卓越性能与应用潜力。它减少可训练参数数量,降低计算复杂度和内存需求,提升训练效率。原创 2025-03-21 09:17:46 · 1178 阅读 · 0 评论 -
自然语言处理|深入解析 PEGASUS:从原理到实践
在信息爆炸的时代,互联网上的文本数据以极快的速度增长。无论是新闻资讯、学术论文、社交媒体动态,还是各类报告文档,我们每天接触到的文字信息量巨大。如何快速、准确地提取关键内容成为一项重要任务。文本摘要技术通过将长篇文本浓缩为简短的核心信息摘要,大幅提升了信息处理效率。原创 2025-03-20 14:36:59 · 1434 阅读 · 1 评论 -
自然语言处理|BART:文本摘要的智能工具
BART 作为一种创新的文本摘要模型,在自然语言处理领域展现出了显著的优势。其结合双向编码和自回归生成的独特架构,使其在处理文本时能够充分理解上下文信息,并生成连贯、准确且富有创造性的摘要。BART 在新闻、信息过滤与推荐、机器翻译等多个领域的成功应用,也证明了其在实际场景中的有效性和实用性 。然而,BART 也并非完美无缺。在长文本处理、对原文理解深度、摘要多样性以及特定领域适应性等方面,BART 仍面临一些挑战 。这些局限性限制了 BART 在某些场景下的应用效果,也为未来的研究和改进指明了方向 。原创 2025-03-20 09:13:20 · 1155 阅读 · 0 评论 -
计算机视觉|首次写入政府工作报告!这个科技新词“具身智能”到底是什么?
具身智能(Embodied Intelligence) 是人工智能领域的关键研究方向,强调智能体通过物理实体与环境交互实现认知和智能行为。与传统人工智能基于静态数据和符号推理不同,具身智能依赖动态感知与动作的协同作用。智能体通过传感器(如摄像头、激光雷达、触觉传感器)采集环境信息,经过内部决策生成动作,并在执行中实时调整,形成 “感知-思考-行动” 的闭环。例如,人形机器人在室内导航时,利用摄像头捕捉墙壁和家具布局,结合激光雷达测量距离,决策移动方向并避开障碍物。这一过程模拟了人类通过视觉、听觉和肢体协作完原创 2025-03-13 14:43:44 · 2056 阅读 · 0 评论 -
计算机视觉|超详细!Meta视觉大模型Segment Anything(SAM)源码解剖
在计算机视觉领域,图像分割是一个核心且具有挑战性的任务,旨在将图像中的不同物体或区域进行划分和识别,广泛应用于自动驾驶、医学影像分析、安防监控等领域。Segment Anything Model(SAM)由 Meta AI 实验室发布,其引入了基于 Prompt 的交互式分割能力,显著提升了图像分割的灵活性和泛化能力。原创 2025-03-13 13:11:21 · 1285 阅读 · 0 评论 -
计算机视觉|一文读懂NeRF:为3D场景重建带来新突破
在计算机视觉和图形学领域,3D 场景重建 一直是一个核心且具有挑战性的研究方向。传统方法,如多视角几何、点云重建和显式 3D 建模,虽然在特定场景中取得了一定成果,但也存在明显的局限性,例如存储效率低、渲染效果不够理想、难以处理动态场景等。而 神经辐射场(Neural Radiance Fields,简称 NeRF) 的提出,为这一领域带来了全新的解决方案和技术突破。原创 2025-03-12 09:27:23 · 2402 阅读 · 1 评论 -
计算机视觉应用 | 卫星遥感在灾害监测中的变化检测技术全解析
卫星遥感中的变化检测技术是灾害监测的利器。从传统差值法到深度学习算法,从光学影像到SAR数据,这一领域正在快速发展。作为技术开发者,我们可以通过 开源工具 和 创新算法 ,将其应用于实际项目中。希望这篇文章能为你提供全面的参考,欢迎留言讨论你的实现经验或疑问!原创 2025-03-11 19:44:09 · 1276 阅读 · 0 评论 -
计算机视觉应用 | 小样本缺陷检测:工业质检中深度学习技术的突破与应用实践
小样本缺陷检测 是工业质检的关键难题,也是人工智能在制造业落地的典型场景。通过迁移学习、数据增强、GAN、自监督学习、少样本学习等技术,我们能够在数据稀缺条件下实现高效、精准的缺陷检测。这些方案提升了质检自动化水平,降低了企业成本。原创 2025-03-11 09:45:00 · 2462 阅读 · 0 评论 -
计算机视觉应用|自动驾驶的感知革命:多传感器融合架构的技术演进与落地实践
自动驾驶的终极目标是实现比人类驾驶更安全、更高效的交通系统。其核心挑战在于如何让机器像人类一样感知和理解复杂环境。然而,人类驾驶员依赖视觉、听觉和触觉的多模态信息,而自动驾驶系统则需要通过传感器和算法模拟这一过程。当前,多传感器融合(Multi-Sensor Fusion, MSF) 已成为解决这一问题的关键技术路径。原创 2025-03-10 14:07:14 · 1971 阅读 · 5 评论 -
深度学习|自监督学习新星:DINO 解析与实践指南
DINO 以其优雅的设计和强大的性能,为自监督学习开辟了新方向。它的学生-教师结构、多视角增强和分布对齐策略,值得每位深度学习从业者深入研究。未来,DINO 可能与多模态学习结合,应用于更广泛的场景。原创 2025-03-09 19:50:42 · 1383 阅读 · 0 评论 -
计算机视觉|MAE 的项目实战:从图像重建到目标检测
上一期文章《深度学习|MAE技术全景图:自监督学习的“掩码魔法“如何重塑AI基础》带大家走进计算机视觉的热门话题——MAE(Masked Autoencoders)。俗话说:“光说不练假把式”。今天就带使用 MAE 进行图像重建和目标检测。如果你是个 Python 小白,别怕,我会用通俗的语言一步步带你入门。我们不仅会实现一个简单的图像重建项目,还会扩展到目标检测的实战,让你从零开始感受 MAE 的强大之处。准备好了吗?Let’s go!原创 2025-03-08 12:12:28 · 1783 阅读 · 3 评论 -
深度学习|MAE技术全景图:自监督学习的“掩码魔法“如何重塑AI基础
自监督学习(Self-Supervised Learning, SSL)作为一种新兴范式,为这一困境提供了突破口。它无需人工标注,而是从数据自身结构中挖掘监督信号。例如,在图像领域,可以通过随机旋转图像并让模型预测旋转角度,或遮挡部分区域让模型重建缺失内容;在 NLP 中,BERT 通过预测掩码单词学习语义和语法。自监督学习的魅力在于,它将未标注数据的“废墟”转化为“金矿”,显著降低数据准备成本,同时提升模型的泛化能力。原创 2025-03-08 10:56:43 · 1442 阅读 · 0 评论 -
AI Agent 分类详解:从反射 Agent 到学习型 Agent 的演进
作为人工智能领域的核心技术之一,AI Agent 的发展前景广阔,潜力巨大。我们有理由相信,随着技术的不断进步,AI Agent 将继续推动各行各业的智能化变革,极大提升我们的生活质量和社会效能。未来的 AI Agent 将不仅仅是智能工具,它们将是推动社会向智能、便捷、更加美好的方向发展的强大引擎。比如最近很火的国产 AI Agent Manus 一个邀请码都炒到 5000块了。原创 2025-03-07 13:47:44 · 1823 阅读 · 0 评论 -
计算机视觉|3D卷积网络VoxelNet:点云检测的革新力量
VoxelNet 作为 3D 目标检测领域的杰出代表,以其独特的体素化处理方式和强大的深度学习架构,在自动驾驶、机器人等众多领域展现出了卓越的应用价值。通过对 3D 点云数据的有效处理,它能够准确地检测和识别目标物体,为智能系统的决策提供关键支持。尽管目前 VoxelNet 面临着计算量、内存占用和实时性等挑战,但随着技术的不断进步和创新,这些问题有望逐步得到解决。未来,VoxelNet 有望在算法优化、多模态融合等方面取得更大的突破,进一步提升其性能和应用范围,为推动 3D 目标检测技术的发展和智能应用的原创 2025-03-07 09:55:59 · 1605 阅读 · 0 评论 -
计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
PointNet++在技术融合与应用扩展方面展现出广阔前景。在技术融合方面,它能够与Transformer结合,利用Transformer处理长距离依赖的能力,提升大规模点云数据的分析效率;同时,与生成对抗网络(GAN)结合,通过GAN实现点云补全和生成,显著增强模型对缺失数据的处理能力。在应用扩展方面,PointNet++展现出多样化的潜力。在医疗领域,它可以分析医学影像中的点云数据,辅助医生识别病变组织,从而提升诊断的准确性。在文物保护领域,通过处理文物扫描的点云数据,PointNet++支持文物的数字原创 2025-03-06 16:09:42 · 1248 阅读 · 0 评论 -
计算机视觉|Swin Transformer:视觉 Transformer 的新方向
在计算机视觉领域的发展历程中,卷积神经网络(CNN)) 长期占据主导地位。从早期的 LeNet 到后来的 AlexNet、VGGNet、ResNet 等,CNN 在图像分类、目标检测、语义分割等任务中取得了显著成果。然而,CNN 在捕捉全局信息和处理长距离依赖关系方面存在局限性。与此同时,Transformer Architektur 在自然语言处理(NLP)领域表现出色,凭借自注意力机制有效捕捉序列数据中的长距离依赖关系,例如 GPT 系列模型在语言生成和问答系统中的成功应用。原创 2025-03-05 09:03:32 · 4369 阅读 · 0 评论 -
计算机视觉|ConvNeXt:CNN 的复兴,Transformer 的新对手
简介ConvNeXt 作为卷积神经网络(CNN)的一次革新性升级,融合了 Transformer 的设计精髓,重塑了 CNN 在计算机视觉领域的竞争力。本文深入剖析了从 ResNet 到 ConvNeXt 的演进历程,探讨其如何通过大核卷积、层归一化和反瓶颈结构等创新设计,在图像分类、目标检测和语义分割等任务中超越传统 CNN 甚至部分 Transformer 模型。从诞生背景到性能表现,ConvNeXt 展现了 CNN 的新潜力,为开发者与研究者开启了计算机视觉的崭新篇章。原创 2025-03-03 14:48:49 · 1978 阅读 · 1 评论 -
计算机视觉|ViT详解:打破视觉与语言界限
Vision Transformer(ViT)是计算机视觉的重要创新,通过 Transformer 架构捕捉图像全局依赖,在图像分类、目标检测、语义分割中展现潜力。其核心是将图像分块并嵌入,结合位置编码输入 Transformer 编码器,通过自注意力建模全局关系。预训练与微调、数据增强、优化器调整提升了性能。原创 2025-03-01 14:12:01 · 1375 阅读 · 1 评论 -
计算机视觉|深入剖析生成对抗网络(GAN)
生成对抗网络(GAN)作为图像生成领域的一项重要技术,以其独特的对抗机制和强大的生成能力,为我们带来了前所未有的视觉体验和创新应用。通过生成器和判别器的相互博弈,GAN 能够学习到真实数据的分布特征,并生成高质量、多样化的图像。原创 2025-03-01 10:49:08 · 1285 阅读 · 0 评论 -
计算机视觉|从0到1揭秘Diffusion:图像生成领域的新革命
Diffusion 模型以其独特的扩散机制,成为图像生成领域的革新力量。通过正反向扩散,它实现了从噪声到高质量图像的转换,在图像、文本和音频生成中表现卓越,突破传统模型局限。其数学基础坚实,稳定性强,适用性广,推动了多领域创新。尽管面临效率和调参挑战,优化方案如 DDIM 已初见成效。原创 2025-02-28 11:04:53 · 1410 阅读 · 0 评论 -
计算机视觉 | 视频理解三剑客 —— ViViT
在深度学习不断发展的当下,视频理解领域也迎来了新的变革者 ——ViViT(Video Vision Transformer) 。它的出现,为视频理解技术开辟了新的道路。在 ViViT 诞生之前,卷积神经网络(CNN)在视频处理领域占据着主导地位。CNN 能够有效地提取图像的空间特征,在图像分类、目标检测等任务中取得了不错的成果。然而,当面对视频这种具有时间维度的序列数据时,CNN 的局限性逐渐显现出来。视频数据不仅包含每一帧图像的空间信息,还蕴含着帧与帧之间的时间依赖关系,而 CNN 难以对这种长距离的时序原创 2025-02-28 09:30:00 · 2466 阅读 · 0 评论 -
目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的 R-CNN 到如今的 YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。原创 2025-02-25 15:57:09 · 2272 阅读 · 2 评论