
机器学习算法
文章平均质量分 95
本专栏主要介绍机器学习核心算法,从基础知识到原理解析,再到代码实战,逐步理解机器学习算法思想。
紫雾凌寒
公众号:紫雾凌寒。8年互联网大厂研发经验,关于软件开发探讨可联系我,专注分享人工智能、移动开发、学习成长。
路漫漫其修远兮,吾将上下而求索。
展开
-
轻量化网络设计|ShuffleNet:深度学习中的轻量化革命
这些传统的 CNN 网络通过不断加深网络层数、增大模型规模,能够学习到非常复杂的图像特征,从而在性能上达到了极高的水平。在追求高精度的同时,模型的规模和计算复杂度也在急剧增加。以 ResNet-152 为例,其包含了 152 层网络结构,拥有数以千万计的参数。如此庞大的模型在运行时需要消耗大量的计算资源和内存空间,这使得它们在一些资源受限的设备,如移动手机、嵌入式设备等上面临着严峻的挑战。在这些设备中,处理器性能相对较弱,内存容量有限,难以支持大规模 CNN 模型的高效运行。原创 2025-02-25 12:31:42 · 1203 阅读 · 0 评论 -
计算机视觉基础|轻量化网络设计:MobileNetV3
MobileNet 系列作为轻量化网络的代表,自推出以来就受到了广泛关注。MobileNetV3 作为该系列的最新版本,在保持模型轻量化的同时,进一步提升了性能和效率。它结合了硬件感知的网络架构搜索(NAS)和 NetAdapt 算法,针对移动设备 CPU 进行了优化,引入了新颖的架构设计和高效的分割解码器,在图像分类、目标检测、语义分割等任务中展现出了卓越的性能。本文将深入探讨 MobileNetV3 的网络结构、创新点以及在实际应用中的表现。原创 2025-02-24 16:06:06 · 2977 阅读 · 0 评论 -
计算机视觉基础 | 数据增强技术:AutoAugment
在深度学习领域,数据就如同模型的 “燃料”,其数量和质量对模型性能有着至关重要的影响。数据增强(Data Augmentation)技术应运而生,它通过对原始数据进行一系列变换操作,如裁剪、旋转、翻转、颜色调整等,人工生成新的训练样本,从而扩大训练数据集的规模 。这不仅能够提高模型的泛化能力,让模型在面对未曾见过的数据时也能表现出色,还能有效减少过拟合的风险。以图像分类任务为例,通过对训练图像进行随机旋转,可以让模型学习到不同角度下物体的特征原创 2025-02-24 15:10:30 · 1575 阅读 · 0 评论 -
计算机视觉基础 | 数据增强黑科技——MixUp
在深度学习的领域中,数据就如同模型的 “燃料”,其数量和质量直接决定了模型性能的优劣。深度神经网络通常需要海量的数据来进行训练,以学习到足够丰富的特征和模式,从而在面对新数据时展现出良好的泛化能力。然而,在现实世界中,获取大规模高质量的标注数据往往面临着诸多挑战,如高昂的成本、时间的限制以及数据收集的困难等 。原创 2025-02-22 14:54:48 · 1199 阅读 · 0 评论 -
计算机视觉基础|卷积神经网络:从数学原理到可视化实战
在当今人工智能飞速发展的时代,卷积神经网络(Convolutional Neural Network,简称 CNN)无疑在诸多领域发挥着关键作用,尤其在计算机视觉领域,如人脸识别、图像分类、目标检测等任务中,CNN 已成为不可或缺的技术。它能够自动从大量数据中学习特征,大大减少了人工特征工程的工作量,并且在性能上超越了许多传统的机器学习方法。尽管 CNN 在实际应用中取得了巨大的成功,但其背后的数学原理和复杂的内部机制却常常让初学者望而却步。原创 2025-02-21 16:29:48 · 2387 阅读 · 0 评论 -
机器学习算法大观:盘点十大热门算法
在当今数据驱动的世界中,机器学习算法如同一把把钥匙,开启了从海量数据中挖掘价值的无限可能。无论是预测房价、识别图像中的物体,还是理解人类语言的语义,机器学习算法都在其中扮演着核心角色。从经典的线性回归、逻辑回归,到基于树结构的决策树,再到处理无监督学习的K-均值聚类,以及模拟人脑思维的神经网络,每一种算法都以其独特的逻辑和应用场景,为实际问题提供了高效解决方案。原创 2025-02-20 10:13:26 · 1442 阅读 · 1 评论 -
解锁机器学习核心算法|神经网络:AI 领域的 “超级引擎”
在当今科技飞速发展的时代,人工智能(AI)无疑是最耀眼的明星,而神经网络作为机器学习中的核心算法,更是推动 AI 不断前行的 “超级引擎”。从智能手机中的语音助手,到自动驾驶汽车,再到图像识别、自然语言处理等领域,神经网络的身影无处不在,它正以强大的学习和预测能力,改变着我们的生活和工作方式。那么,神经网络究竟是如何运作的?它又有着怎样的发展历程和应用前景呢?接下来,就让我们一起走进神经网络的奇妙世界。原创 2025-02-20 09:10:29 · 1057 阅读 · 0 评论 -
解锁机器学习核心算法|主成分分析(PCA):降维的魔法棒
在这众多的算法中,主成分分析(Principal Component Analysis,简称 PCA)以其独特的魅力和广泛的应用,成为了机器学习领域中不可或缺的一员。它就像一位神奇的魔法师,能够对高维数据施展 “降维” 魔法,将复杂的数据简化,同时最大程度地保留数据的关键信息。 无论是在图像识别中对图像数据的处理,还是在数据分析中探索数据的潜在模式,PCA 都发挥着重要的作用,为解决各种实际问题提供了有效的手段 。接下来,就让我们一起深入探索主成分分析的奇妙世界,揭开它的神秘面纱。原创 2025-02-19 10:15:08 · 1491 阅读 · 0 评论 -
解锁机器学习核心算法|朴素贝叶斯:分类的智慧法则
朴素贝叶斯算法作为机器学习领域的经典算法,以贝叶斯定理和特征条件独立假设为核心,构建了简单而有效的分类模型 。通过计算先验概率、条件概率和后验概率,实现对样本的分类决策 。其常见模型包括高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯,分别适用于连续型数据、文本分类和二值特征数据等不同场景 。在实际应用中,朴素贝叶斯算法在文本分类、垃圾邮件过滤、情感分析、推荐系统等领域都发挥着重要作用 。原创 2025-02-19 08:30:00 · 321 阅读 · 0 评论 -
解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的 “十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Support Vector Machine,SVM)算法凭借其独特的理论和卓越的性能,占据着举足轻重的地位。原创 2025-02-18 13:17:22 · 1068 阅读 · 0 评论 -
解锁机器学习核心算法 | 随机森林算法:机器学习的超强武器
在机器学习的广阔领域中,算法的选择犹如为一场冒险挑选趁手的武器,至关重要。面对海量的数据和复杂的任务,合适的算法能够化繁为简,精准地挖掘出数据背后隐藏的模式与价值。机器学习领域有十大核心算法,而随机森林算法(Random Forest Algorithm)以其独特的魅力和卓越的性能,占据着举足轻重的地位。原创 2025-02-18 10:26:23 · 2504 阅读 · 0 评论 -
解锁机器学习核心算法 | K -近邻算法:机器学习的神奇钥匙
**K - 近邻算法**,作为机器学习中的一种基本分类与回归方法,以其独特的 “**基于邻居投票**” 策略而闻名。它的核心思想简单易懂,就如同我们在生活中判断一个人可能的兴趣爱好时,会参考他身边最常接触的朋友们的兴趣一样。在 K - 近邻算法中,当面对一个新的数据点需要判断其类别时,算法会在已有的训练数据集中寻找与它距离最近的 K 个邻居,然后根据这 K 个邻居的类别来决定新数据点的归属。这种直观的判断方式,使得 K - 近邻算法在许多实际应用中都展现出了强大的性能和适应性。原创 2025-02-17 14:57:40 · 1231 阅读 · 0 评论 -
解锁机器学习核心算法 | K-平均:揭开K-平均算法的神秘面纱
机器学习算法种类繁多,它们各自有着独特的优势和应用场景。前面我们学习了线性回归算法、逻辑回归算法、决策树算法。而今天,我们要深入探讨的是其中一种经典且广泛应用的聚类算法 —— K - 平均算法(K-Means Algorithm) 。它在数据挖掘、图像处理、市场分析等众多领域都发挥着重要作用,能够帮助我们发现数据中的潜在模式和规律,为决策提供有力支持。K - 平均算法,也被称为 K - 均值算法,是一种广泛应用的聚类算法 ,属于无监督学习的范畴。原创 2025-02-17 10:32:56 · 1540 阅读 · 0 评论 -
解锁机器学习核心算法 | 决策树:机器学习中高效分类的利器
本文深入探讨机器学习算法中的决策树算法。开篇阐述决策树逼近离散函数值用于数据分类的基本概念,接着剖析其根节点、中间节点、边与叶节点等构成要素。详细介绍从数据准备到树生长的构建流程,以及预剪枝和后剪枝策略。同时,对 ID3、C4.5、CART 等常见算法展开分析,探讨其优缺点,并列举在医疗、金融、营销及图像处理等领域的应用场景。最后通过 Python 和 Scikit - learn 实现代码示例,旨在帮助读者全面掌握决策树算法。原创 2025-02-16 22:47:50 · 1423 阅读 · 0 评论 -
解锁机器学习核心算法 | 逻辑回归:不是回归的“回归”
上一篇文章我们介绍了机器学习算法中我们最先会接触到的算法 ——线性回归。今天我们继续学习机器学习中的另一个算法模型 —— 逻辑回归(Logistic Regression)。原创 2025-02-16 21:35:08 · 1198 阅读 · 0 评论 -
解锁机器学习核心算法 | 线性回归:机器学习的基石
在机器学习的众多算法中,线性回归宛如一块基石,看似质朴无华,却稳稳支撑起诸多复杂模型的架构。它是我们初涉机器学习领域时便会邂逅的算法之一,其原理与应用广泛渗透于各个领域。无论是预测房价走势、剖析股票市场波动,还是钻研生物医学数据、优化工业生产流程,线性回归皆能大显身手。本质上,线性回归是一种用于构建变量间线性关系的统计模型。它试图寻觅一条最佳拟合直线(或超平面),以使预测值与实际观测值之间的误差降至最低。这般简洁直观的理念,实则蕴含着强大力量,助力我们从海量数据中挖掘宝贵信息,进而做出有效的预测与决策。原创 2025-02-15 13:47:31 · 1185 阅读 · 0 评论