
计算机视觉
文章平均质量分 95
本专栏主要介绍计算机视觉相关,包括基础技术、核心任务、模型架构、行业应用、前沿方向探索等。
紫雾凌寒
公众号:紫雾凌寒。8年互联网大厂研发经验,关于软件开发探讨可联系我,专注分享人工智能、移动开发、学习成长。
路漫漫其修远兮,吾将上下而求索。
展开
-
当量子计算邂逅计算机视觉:开启科技融合新征程
在科技飞速发展的当今时代,量子计算和**计算机视觉(CV)**作为两个极具潜力的前沿领域,正各自展现出独特的价值和影响力。量子计算基于量子力学原理,利用量子比特(qubit)的叠加和纠缠特性,赋予计算机超越传统计算的强大能力,使其能够以极高的速度解决复杂问题。这种技术在科学研究(如分子模拟)、金融建模(如风险评估)、密码破解(如分解大整数)等领域展现出革命性潜力。与此同时,计算机视觉通过模拟人类视觉系统,使机器能够理解和处理图像及视频信息,依赖卷积神经网络(CNN)、目标检测(如 YOLO 系列)、图像分割原创 2025-03-14 09:07:54 · 1241 阅读 · 4 评论 -
计算机视觉|首次写入政府工作报告!这个科技新词“具身智能”到底是什么?
具身智能(Embodied Intelligence) 是人工智能领域的关键研究方向,强调智能体通过物理实体与环境交互实现认知和智能行为。与传统人工智能基于静态数据和符号推理不同,具身智能依赖动态感知与动作的协同作用。智能体通过传感器(如摄像头、激光雷达、触觉传感器)采集环境信息,经过内部决策生成动作,并在执行中实时调整,形成 “感知-思考-行动” 的闭环。例如,人形机器人在室内导航时,利用摄像头捕捉墙壁和家具布局,结合激光雷达测量距离,决策移动方向并避开障碍物。这一过程模拟了人类通过视觉、听觉和肢体协作完原创 2025-03-13 14:43:44 · 2056 阅读 · 0 评论 -
计算机视觉|超详细!Meta视觉大模型Segment Anything(SAM)源码解剖
在计算机视觉领域,图像分割是一个核心且具有挑战性的任务,旨在将图像中的不同物体或区域进行划分和识别,广泛应用于自动驾驶、医学影像分析、安防监控等领域。Segment Anything Model(SAM)由 Meta AI 实验室发布,其引入了基于 Prompt 的交互式分割能力,显著提升了图像分割的灵活性和泛化能力。原创 2025-03-13 13:11:21 · 1285 阅读 · 0 评论 -
计算机视觉实战|NeRF 实战教程:基于 nerf_recon_dataset 的三维重建
神经辐射场(NeRF) 是一种利用神经网络从多视角图像重建 3D 场景的技术,通过隐式表示场景的几何和外观,实现高质量渲染。本教程将引导您使用 PyTorch 实现 NeRF 模型,基于 ModelScope 提供的 nerf_recon_dataset 数据集完成三维重建实战,包括环境配置、数据准备、模型构建、训练和渲染。原创 2025-03-12 10:35:15 · 959 阅读 · 0 评论 -
计算机视觉|一文读懂NeRF:为3D场景重建带来新突破
在计算机视觉和图形学领域,3D 场景重建 一直是一个核心且具有挑战性的研究方向。传统方法,如多视角几何、点云重建和显式 3D 建模,虽然在特定场景中取得了一定成果,但也存在明显的局限性,例如存储效率低、渲染效果不够理想、难以处理动态场景等。而 神经辐射场(Neural Radiance Fields,简称 NeRF) 的提出,为这一领域带来了全新的解决方案和技术突破。原创 2025-03-12 09:27:23 · 2400 阅读 · 1 评论 -
计算机视觉应用 | 卫星遥感在灾害监测中的变化检测技术全解析
卫星遥感中的变化检测技术是灾害监测的利器。从传统差值法到深度学习算法,从光学影像到SAR数据,这一领域正在快速发展。作为技术开发者,我们可以通过 开源工具 和 创新算法 ,将其应用于实际项目中。希望这篇文章能为你提供全面的参考,欢迎留言讨论你的实现经验或疑问!原创 2025-03-11 19:44:09 · 1276 阅读 · 0 评论 -
计算机视觉应用 | 小样本缺陷检测:工业质检中深度学习技术的突破与应用实践
小样本缺陷检测 是工业质检的关键难题,也是人工智能在制造业落地的典型场景。通过迁移学习、数据增强、GAN、自监督学习、少样本学习等技术,我们能够在数据稀缺条件下实现高效、精准的缺陷检测。这些方案提升了质检自动化水平,降低了企业成本。原创 2025-03-11 09:45:00 · 2462 阅读 · 0 评论 -
目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的 R-CNN 到如今的 YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。原创 2025-02-25 15:57:09 · 2272 阅读 · 2 评论 -
计算机视觉应用|自动驾驶的感知革命:多传感器融合架构的技术演进与落地实践
自动驾驶的终极目标是实现比人类驾驶更安全、更高效的交通系统。其核心挑战在于如何让机器像人类一样感知和理解复杂环境。然而,人类驾驶员依赖视觉、听觉和触觉的多模态信息,而自动驾驶系统则需要通过传感器和算法模拟这一过程。当前,多传感器融合(Multi-Sensor Fusion, MSF) 已成为解决这一问题的关键技术路径。原创 2025-03-10 14:07:14 · 1971 阅读 · 5 评论 -
计算机视觉应用|医疗影像的智能化革命:病理切片AI辅助诊断系统的现状与未来
病理学是医学诊断的“金标准”,而病理切片分析是癌症确诊与分期的核心依据。在传统病理诊断流程中,医生需将组织样本制成厚度仅3-5微米的玻璃切片,通过显微镜逐区域观察细胞形态、组织结构等特征,最终形成诊断报告。这一过程高度依赖医生的经验与专注力——据统计,一名病理医生平均每天需分析80-120张切片,每张切片可能包含数万个细胞,长期高强度工作易导致视觉疲劳与诊断偏差。更为严峻的是,全球病理医生资源极度短缺:美国病理学会数据显示,美国每年病理医生缺口达5700人;中国2022年统计显示,基层医院中约30%的病理科原创 2025-03-10 11:37:57 · 1708 阅读 · 0 评论 -
深度学习|自监督学习新星:DINO 解析与实践指南
DINO 以其优雅的设计和强大的性能,为自监督学习开辟了新方向。它的学生-教师结构、多视角增强和分布对齐策略,值得每位深度学习从业者深入研究。未来,DINO 可能与多模态学习结合,应用于更广泛的场景。原创 2025-03-09 19:50:42 · 1383 阅读 · 0 评论 -
计算机视觉|MAE 的项目实战:从图像重建到目标检测
上一期文章《深度学习|MAE技术全景图:自监督学习的“掩码魔法“如何重塑AI基础》带大家走进计算机视觉的热门话题——MAE(Masked Autoencoders)。俗话说:“光说不练假把式”。今天就带使用 MAE 进行图像重建和目标检测。如果你是个 Python 小白,别怕,我会用通俗的语言一步步带你入门。我们不仅会实现一个简单的图像重建项目,还会扩展到目标检测的实战,让你从零开始感受 MAE 的强大之处。准备好了吗?Let’s go!原创 2025-03-08 12:12:28 · 1783 阅读 · 3 评论 -
深度学习|MAE技术全景图:自监督学习的“掩码魔法“如何重塑AI基础
自监督学习(Self-Supervised Learning, SSL)作为一种新兴范式,为这一困境提供了突破口。它无需人工标注,而是从数据自身结构中挖掘监督信号。例如,在图像领域,可以通过随机旋转图像并让模型预测旋转角度,或遮挡部分区域让模型重建缺失内容;在 NLP 中,BERT 通过预测掩码单词学习语义和语法。自监督学习的魅力在于,它将未标注数据的“废墟”转化为“金矿”,显著降低数据准备成本,同时提升模型的泛化能力。原创 2025-03-08 10:56:43 · 1442 阅读 · 0 评论 -
计算机视觉|3D卷积网络VoxelNet:点云检测的革新力量
VoxelNet 作为 3D 目标检测领域的杰出代表,以其独特的体素化处理方式和强大的深度学习架构,在自动驾驶、机器人等众多领域展现出了卓越的应用价值。通过对 3D 点云数据的有效处理,它能够准确地检测和识别目标物体,为智能系统的决策提供关键支持。尽管目前 VoxelNet 面临着计算量、内存占用和实时性等挑战,但随着技术的不断进步和创新,这些问题有望逐步得到解决。未来,VoxelNet 有望在算法优化、多模态融合等方面取得更大的突破,进一步提升其性能和应用范围,为推动 3D 目标检测技术的发展和智能应用的原创 2025-03-07 09:55:59 · 1605 阅读 · 0 评论 -
计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
PointNet++在技术融合与应用扩展方面展现出广阔前景。在技术融合方面,它能够与Transformer结合,利用Transformer处理长距离依赖的能力,提升大规模点云数据的分析效率;同时,与生成对抗网络(GAN)结合,通过GAN实现点云补全和生成,显著增强模型对缺失数据的处理能力。在应用扩展方面,PointNet++展现出多样化的潜力。在医疗领域,它可以分析医学影像中的点云数据,辅助医生识别病变组织,从而提升诊断的准确性。在文物保护领域,通过处理文物扫描的点云数据,PointNet++支持文物的数字原创 2025-03-06 16:09:42 · 1248 阅读 · 0 评论 -
计算机视觉|Swin Transformer:视觉 Transformer 的新方向
在计算机视觉领域的发展历程中,卷积神经网络(CNN)) 长期占据主导地位。从早期的 LeNet 到后来的 AlexNet、VGGNet、ResNet 等,CNN 在图像分类、目标检测、语义分割等任务中取得了显著成果。然而,CNN 在捕捉全局信息和处理长距离依赖关系方面存在局限性。与此同时,Transformer Architektur 在自然语言处理(NLP)领域表现出色,凭借自注意力机制有效捕捉序列数据中的长距离依赖关系,例如 GPT 系列模型在语言生成和问答系统中的成功应用。原创 2025-03-05 09:03:32 · 4369 阅读 · 0 评论 -
计算机视觉|ConvNeXt:CNN 的复兴,Transformer 的新对手
简介ConvNeXt 作为卷积神经网络(CNN)的一次革新性升级,融合了 Transformer 的设计精髓,重塑了 CNN 在计算机视觉领域的竞争力。本文深入剖析了从 ResNet 到 ConvNeXt 的演进历程,探讨其如何通过大核卷积、层归一化和反瓶颈结构等创新设计,在图像分类、目标检测和语义分割等任务中超越传统 CNN 甚至部分 Transformer 模型。从诞生背景到性能表现,ConvNeXt 展现了 CNN 的新潜力,为开发者与研究者开启了计算机视觉的崭新篇章。原创 2025-03-03 14:48:49 · 1976 阅读 · 1 评论 -
计算机视觉|ViT详解:打破视觉与语言界限
Vision Transformer(ViT)是计算机视觉的重要创新,通过 Transformer 架构捕捉图像全局依赖,在图像分类、目标检测、语义分割中展现潜力。其核心是将图像分块并嵌入,结合位置编码输入 Transformer 编码器,通过自注意力建模全局关系。预训练与微调、数据增强、优化器调整提升了性能。原创 2025-03-01 14:12:01 · 1375 阅读 · 1 评论 -
计算机视觉|深入剖析生成对抗网络(GAN)
生成对抗网络(GAN)作为图像生成领域的一项重要技术,以其独特的对抗机制和强大的生成能力,为我们带来了前所未有的视觉体验和创新应用。通过生成器和判别器的相互博弈,GAN 能够学习到真实数据的分布特征,并生成高质量、多样化的图像。原创 2025-03-01 10:49:08 · 1285 阅读 · 0 评论 -
计算机视觉|从0到1揭秘Diffusion:图像生成领域的新革命
Diffusion 模型以其独特的扩散机制,成为图像生成领域的革新力量。通过正反向扩散,它实现了从噪声到高质量图像的转换,在图像、文本和音频生成中表现卓越,突破传统模型局限。其数学基础坚实,稳定性强,适用性广,推动了多领域创新。尽管面临效率和调参挑战,优化方案如 DDIM 已初见成效。原创 2025-02-28 11:04:53 · 1410 阅读 · 0 评论 -
计算机视觉 | 视频理解三剑客 —— ViViT
在深度学习不断发展的当下,视频理解领域也迎来了新的变革者 ——ViViT(Video Vision Transformer) 。它的出现,为视频理解技术开辟了新的道路。在 ViViT 诞生之前,卷积神经网络(CNN)在视频处理领域占据着主导地位。CNN 能够有效地提取图像的空间特征,在图像分类、目标检测等任务中取得了不错的成果。然而,当面对视频这种具有时间维度的序列数据时,CNN 的局限性逐渐显现出来。视频数据不仅包含每一帧图像的空间信息,还蕴含着帧与帧之间的时间依赖关系,而 CNN 难以对这种长距离的时序原创 2025-02-28 09:30:00 · 2466 阅读 · 0 评论 -
计算机视觉 |解锁视频理解三剑客——TimeSformer
TimeSformer 作为视频理解领域的重要创新成果,以其独特的时空自注意力机制和基于 Transformer 的架构,突破了传统视频理解方法的局限,在性能、效率和应用范围等方面展现出显著优势。它不仅在学术研究中取得了令人瞩目的成果,为视频理解的理论发展提供了新的思路和方法,还在实际应用中发挥了重要作用,为安防监控、智能家居、娱乐媒体、体育分析等多个领域带来了智能化的解决方案,提升了各行业的效率和体验。原创 2025-02-27 17:42:19 · 1424 阅读 · 0 评论 -
计算机视觉 |解锁视频理解三剑客——SlowFast
SlowFast 模型作为视频理解领域的杰出代表,以其独特的双路径架构和高效的时空信息处理能力,为众多应用场景带来了革新性的解决方案 。它在安防监控中,如同敏锐的守护者,实时监测异常行为,为公共安全保驾护航;在智能驾驶领域,是可靠的辅助者,助力车辆准确识别交通标志和行人动作,保障出行安全;在视频内容分析方面,又像是精准的分类器和审核员,实现视频的智能分类和内容审核 。原创 2025-02-27 15:42:13 · 1913 阅读 · 0 评论 -
计算机视觉实战|Mask2Former实战:轻松掌握全景分割、实例分割与语义分割
Mask2Former 是一个多功能的图像分割模型,它能同时处理三种任务:全景分割、实例分割和语义分割。听起来是不是有点高大上?其实它就像一个“万能的图像分析师”,能帮你轻松搞定图像中的物体识别和分割。这篇文章将带你从基础概念到实战操作,学会如何使用 Mask2Former 处理图像分割任务。原创 2025-02-26 14:52:08 · 1705 阅读 · 0 评论 -
计算机视觉|Mask2Former:开启实例分割新范式
在计算机视觉领域,图像分割是一项至关重要的任务,它就像是为计算机赋予了一双能够理解图像内容的 “慧眼”。简单来说,图像分割的目的是将图像中的不同物体或区域进行划分,让计算机能够识别出每个部分的边界和所属类别。例如,在医学图像分析中,图像分割可以帮助医生准确地识别出病变组织;在自动驾驶领域,它能让车辆识别出道路、行人、交通标志等元素。原创 2025-02-26 09:35:48 · 2465 阅读 · 3 评论 -
计算机视觉基础 | 数据增强黑科技——CutMix
在深度学习的领域中,数据就如同模型的 “燃料”,优质且丰富的数据能够让模型学习到更广泛的特征,从而提升模型的性能和泛化能力。然而,在实际项目里,获取大量高质量的数据往往面临着诸多挑战,比如高昂的成本、时间的限制以及数据标注的复杂性等。这时,数据增强技术就如同一位神奇的 “魔法师”,能够在有限的数据基础上创造出更多样化的训练样本,成为了解决数据不足问题的关键手段。原创 2025-02-22 13:59:43 · 1334 阅读 · 0 评论 -
计算机视觉基础|卷积神经网络:从数学原理到可视化实战
在当今人工智能飞速发展的时代,卷积神经网络(Convolutional Neural Network,简称 CNN)无疑在诸多领域发挥着关键作用,尤其在计算机视觉领域,如人脸识别、图像分类、目标检测等任务中,CNN 已成为不可或缺的技术。它能够自动从大量数据中学习特征,大大减少了人工特征工程的工作量,并且在性能上超越了许多传统的机器学习方法。尽管 CNN 在实际应用中取得了巨大的成功,但其背后的数学原理和复杂的内部机制却常常让初学者望而却步。原创 2025-02-21 16:29:48 · 2387 阅读 · 0 评论 -
计算机视觉基础|从 OpenCV 到频域分析
在当今数字化时代,图像处理已渗透到我们生活的方方面面,从日常使用的智能手机拍照美化,到医学领域的精准诊断,再到自动驾驶中的环境感知,其重要性不言而喻。在图像处理领域中,OpenCV 和频域分析,成为众多开发者和研究者不可或缺的强大工具。原创 2025-02-21 10:39:18 · 1922 阅读 · 0 评论