Android端调用Caffe模型实现CNN分类

本文探讨了移动端深度学习的实现方式,包括Caffe的移动端项目、tiny-cnn移植和Facebook的Caffe2go。针对Caffe在Android上的应用,介绍了项目的实用性和性能挑战,同时提到了MXNet和TensorFlow的移动端支持。作者还分享了对tiny-cnn移植到Android的经验,并展望了未来改进的方向,如增加层支持和GPU加速。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文的主要内容如下。

  • 移动端的深度学习的实现方式
  • tiny-cnn介绍以及移动端移植
  • 总结与改进
  • 应用截图

一.移动端深度学习的几种实现方式

(1)Caffe的移动端编译项目

caffe(命令式框架)算是在国内最流行的深度学习开源框架,使用它进行商业,研究的人很多。对于移动端的实现,也有开源项目对caffe进行了移植。
项目连接如下:

android-lib
android-demo

我认识的很多科研院所的朋友以及百度这种大公司他们,在移动端的本地项目中也使用了caffe-android,证明了该项目有很高的实用性。当然,我认为该项目存在的问题就是模型过大,速度性能很差;当前不支持GPU,无法做到实时;caffe是个通用的框架,调用了很多库,如果只需要做cnn的话,该项目还需要自我定制和瘦身。


(2)mxnet的移动端项目

mxnet(符号式框架)主要也是几个中国人一起发起和维护的深度开源项目,足够灵活,速度足够快,扩展新的功能比较容易,内存复用,很有潜力成为未来优秀的深度项目。最关键的是,mxnet本身提供了对android,ios移动端的的支持。而且最近,mxnet已经 被 Amazon AWS 选为官方深度学习平台。

mxnet实现的简介

项目连接如下:

android-lib

android demo

本人也使用过该项目,其中的感想如下。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值