程序员面试题之计算阶乘n!尾数0的个数

27 篇文章 0 订阅

一、问题描述

  给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数。例如:

  • 5!=120,其末尾所含有的“0”的个数为1;
  • 10!= 3628800,其末尾所含有的“0”的个数为2;
  • 20!= 2432902008176640000,其末尾所含有的“0”的个数为4。

二、算法分析

  此类问题很显然属于数学问题,一定要找到其中的本质规律才能得到正确的数学模型。

  两个大数字相乘,都可以拆分成多个质数相乘,而质数相乘结果尾数为0的,只可能是2*5。如果想到了这一点,那么就可以进一步想到:两个数相乘尾数0的个数其实就是依赖于2和5因子的个数。又因为每两个连续数字就会有一个因子2,个数非常充足,所以此时只需要关心5因子的个数就行了。

  对于一个正整数n来说,怎么计算n!中5因子的个数呢?我们可以把5的倍数都挑出来,即:

  令n! = (5*K) * (5*(K-1)) * (5*(K-2)) * ... * 5 * A,其中A就是不含5因子的数相乘结果,n = 5*K + r(0<= r <= 4)。假设f(n!)是计算阶乘n!尾数0的个数,而g(n!)是计算n!中5因子的个数,那么就会有如下公式:

  f(n!) = g(n!) = g(5^K * K! * A) = K + g(K!) = K + f(K!),其中K=n / 5(取整数)。

  很显然,当0 <= n <= 4时,f(n!)=0。结合这两个公式,就搞定了这个问题了。举几个例子来说:

  • f(5!) = 1 + f(1!) = 1
  • f(10!) = 2 + f(2!) = 2
  • f(20!) = 4 + f(4!) = 4
  • f(100!) = 20 + f(20!) = 20 + 4 + f(4!) = 24
  • f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249

三、代码实现

   使用递归函数来做,非常的简单,直接套用公式即可:

#include<iostream>
using namespace std;
int numsofzero(int x) {
	int temp = 0;
	while (x != 0) {
		x /= 5;
		temp += x;
	}
	return temp;
}
int main() {
	int a;
	cout << "Input the number:";
	cin >> a;
	cout << numsofzero(a);
	cout << endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值