JData数据处理及高潜用户购买意向预测

本文参与京东数据竞赛,通过历史销售数据预测用户未来5天的购买意向。介绍了数据清洗、特征工程、模型调优等步骤,包括用户和商品特征构建,使用XGBoost进行建模,并解决编程过程中的MemoryError问题。
摘要由CSDN通过智能技术生成

竞赛概述:

本次大赛以京东商城真实的用户、商品和行为数据(脱敏后)为基础,参赛队伍需要通过数据挖掘的技术和机器学习的算法,构建用户购买商品的预测模型,输出高潜用户和目标商品的匹配结果,为精准营销提供高质量的目标群体。同时,希望参赛队伍能通过本次比赛,挖掘数据背后潜在的意义,为电商用户提供更简单、快捷、省心的购物体验。

数据介绍:

符号定义:
S:提供的商品全集;
P:候选的商品子集(JData_Product.csv),P是S的子集;
U:用户集合;
A:用户对S的行为数据集合;
C:S的评价数据。

训练数据部分:
提供2016-02-01到2016-04-15日用户集合U中的用户,对商品集合S中部分商品的行为、评价、用户数据;提供部分候选商品的数据P。
选手从数据中自行组成特征和数据格式,自由组合训练测试数据比例。

预测数据部分:
2016-04-16到2016-04-20用户是否下单P中的商品,每个用户只会下单一个商品;抽取部分下单用户数据,A榜使用50%的测试数据来计算分数;B榜使用另外50%的数据计算分数(计算准确率时剔除用户提交结果中user_Id与A榜的交集部分)。

1、用户数据


2、商品数据


3、评价数据


4、行为数据


任务描述:

参赛者需要使用京东多个品类下商品的历史销售数据,构建算法模型,预测用户在未来5天内,对某个目标品类下商品的购买意向。对于训练集中出现的每一个用户,参赛者的模型需要预测该用户在未来5天内是否购买目标品类下的商品以及所购买商品的SKU_ID。评测算法将针对参赛者提交的预测结果,计算加权得分。

JDdata算法-高潜用户购买意向预测是一个以数据挖掘和机器学习为基础的项目,其目标是通过分析平台上的用户行为数据预测用户对商品的购买意向。通过这个比希望能够进一步提用户购买转化率,提升用户物体验。 在比中,参者需要利用提供的用户行为数据,如用户物记录、浏览记录、搜索记录等,以及商品的相关信息,通过建立有效的模型,预测用户是否有购买某种商品的意向。这个预测结果对于来说具有重要义,可以帮助优化推荐系统,提供更为个性化的商品推荐,从而吸引更多的用户进行购买。 为了参者能够更好地完成这个任务,提供了大量的数据和工具。参者可以自由使用这些数据和工具进行分析和建模,并提交预测结果。在整个比过程中,参者可以通过不断地调整模型参数和特征工程,提升模型的预测能力。 参与这个比可以带来很多好处。首先,参者可以通过实践学习数据挖掘和机器学习的相关知识和技术,提自己在这个领域的能力。其次,通过分析平台上的数据,参者可以深入了解用户的消费习惯,洞察用户购买行为,为企业提供有价值的业务洞见。最后,成功的参者还有机会获得丰厚的奖金和荣誉,进一步提升个人的社会影响力。 总之,JDdata算法-高潜用户购买意向预测是一个很有义的项目,对于参者和来说都具有重要的价值。通过这个比,可以促进数据挖掘和机器学习技术的发展,提升的推荐系统,为用户提供更好的物体验。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值