最小二乘拟合,L1、L2正则化约束

本文介绍了最小二乘法的概念及其在数据最佳匹配中的应用。当需要加入正则化约束时,例如L1和L2正则化,文章提供了相应的数学公式和Matlab代码实现。实验结果显示,L2正则化约束能有效减少过拟合现象。
摘要由CSDN通过智能技术生成

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

从维基百科中摘取的最小二乘的拟合曲线。


解法:其中Y为列向量,X为N*K的矩阵,W为K*1的行向量


虽说Matlab中有现成的拟合函数,但是,当有些正则化约束来限制W的取值时,就无法用拟合函数来实现。这时,需要我们自己写出求解的代码,才行。

 

与前面提到的相同,

下面公式中,X为N*K矩阵&

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值