最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
从维基百科中摘取的最小二乘的拟合曲线。
解法:其中Y为列向量,X为N*K的矩阵,W为K*1的行向量
虽说Matlab中有现成的拟合函数,但是,当有些正则化约束来限制W的取值时,就无法用拟合函数来实现。这时,需要我们自己写出求解的代码,才行。
与前面提到的相同,
下面公式中,X为N*K矩阵&