什么是共轭和共轭转置

1. 什么是共轭

共轭(Conjugate)是复数的一个基本操作。

  • 给定一个复数 z = a + b i z = a + bi z=a+bi(其中 a a a 是实部, b b b 是虚部, i i i 是虚数单位, i 2 = − 1 i^2 = -1 i2=1),其共轭复数记作 z ‾ \overline{z} z,定义为:
    z ‾ = a − b i \overline{z} = a - bi z=abi
  • 简单来说,共轭操作就是将复数的虚部取反。
例子
  1. z = 3 + 4 i z = 3 + 4i z=3+4i,则其共轭为 z ‾ = 3 − 4 i \overline{z} = 3 - 4i z=34i
  2. z = 5 z = 5 z=5(纯实数),则其共轭为 z ‾ = 5 \overline{z} = 5 z=5
  3. z = 7 i z = 7i z=7i(纯虚数),则其共轭为 z ‾ = − 7 i \overline{z} = -7i z=7i

2. 什么是共轭转置

共轭转置(Conjugate Transpose 或 Hermitian Transpose)是对矩阵的一个复数操作。

  • 定义:给定一个复数矩阵 A A A,其共轭转置记作 A † A^\dagger A A H A^H AH,它是矩阵的转置共轭操作的组合:
    A † = ( A ‾ ) T A^\dagger = (\overline{A})^T A=(A)T
    即:
    1. 先对矩阵中的每个元素取共轭。
    2. 然后对矩阵进行转置(行变列,列变行)。
公式表示

如果矩阵 A A A 为:
A = [ z 11 z 12 … z 1 n z 21 z 22 … z 2 n ⋮ ⋮ ⋱ ⋮ z m 1 z m 2 … z m n ] A = \begin{bmatrix} z_{11} & z_{12} & \dots & z_{1n} \\ z_{21} & z_{22} & \dots & z_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{m1} & z_{m2} & \dots & z_{mn} \end{bmatrix} A= z11z21zm1z12z22zm2z1nz2nzmn
那么共轭转置矩阵 A † A^\dagger A 为:
A † = [ z 11 ‾ z 21 ‾ … z m 1 ‾ z 12 ‾ z 22 ‾ … z m 2 ‾ ⋮ ⋮ ⋱ ⋮ z 1 n ‾ z 2 n ‾ … z m n ‾ ] A^\dagger = \begin{bmatrix} \overline{z_{11}} & \overline{z_{21}} & \dots & \overline{z_{m1}} \\ \overline{z_{12}} & \overline{z_{22}} & \dots & \overline{z_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{z_{1n}} & \overline{z_{2n}} & \dots & \overline{z_{mn}} \end{bmatrix} A= z11z12z1nz21z22z2nzm1zm2zmn

例子
  1. 对一个复数矩阵:
    A = [ 1 + i 2 − i 3 4 + 2 i ] A = \begin{bmatrix} 1 + i & 2 - i \\ 3 & 4 + 2i \end{bmatrix} A=[1+i32i4+2i]
    其共轭转置为:
    A † = [ 1 − i 3 2 + i 4 − 2 i ] A^\dagger = \begin{bmatrix} 1 - i & 3 \\ 2 + i & 4 - 2i \end{bmatrix} A=[1i2+i342i]

  2. 对一个纯实数矩阵(没有虚部):
    B = [ 1 2 3 4 ] B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B=[1324]
    由于没有虚部,共轭操作没有影响,因此 B † = B T B^\dagger = B^T B=BT
    B † = [ 1 3 2 4 ] B^\dagger = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} B=[1234]


3. 共轭转置的性质

(1) 与转置的区别
  • 转置 A T A^T AT:只交换行与列。
  • 共轭转置 A † A^\dagger A:交换行与列,同时对每个元素取共轭。
(2) 自共轭矩阵(Hermitian Matrix)

如果一个矩阵满足 A † = A A^\dagger = A A=A,那么 A A A 称为自共轭矩阵(或 Hermitian 矩阵)。这是一种特殊的矩阵,类似于实数域上的对称矩阵。

(3) 共轭转置的逆

如果矩阵 A A A 是酉矩阵( U † U = U U † = E U^\dagger U = U U^\dagger = E UU=UU=E),则 U † = U − 1 U^\dagger = U^{-1} U=U1,类似于正交矩阵的性质 W T = W − 1 W^T = W^{-1} WT=W1

(4) 共轭转置与矩阵乘法

如果 A A A B B B 是两个复数矩阵,则:
( A B ) † = B † A † (AB)^\dagger = B^\dagger A^\dagger (AB)=BA
这类似于转置的性质 ( A B ) T = B T A T (AB)^T = B^T A^T (AB)T=BTAT


4. 应用场景

(1) 量子力学

在量子力学中,态矢量和算符经常是复数形式的,共轭转置广泛用于描述物理量。

  • 自共轭矩阵(Hermitian 矩阵)代表可观测量(如能量、动量)。
  • 酉矩阵(Unitary 矩阵)描述量子态的演化。
(2) 奇异值分解(SVD)

在奇异值分解中,左奇异矩阵 U U U 和右奇异矩阵 V V V 通常是酉矩阵,因此满足 U † U = E U^\dagger U = E UU=E V † V = E V^\dagger V = E VV=E

(3) 信号处理

在傅里叶变换等操作中,复数矩阵的共轭转置用于处理复数信号的相关性。

(4) 机器学习

在复杂特征值分解和复数向量的降维中,共轭转置经常出现。


5. 总结

  • 共轭:复数操作,取虚部的相反数。
  • 共轭转置:矩阵操作,包括共轭转置两步。
  • 重要性质
    • 保持复内积。
    • A † A^\dagger A 是 Hermitian 矩阵和酉矩阵等概念的基础。
    • 在复数向量空间中,共轭转置具有与转置类似的作用,但能处理复数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值