1. 什么是共轭
共轭(Conjugate)是复数的一个基本操作。
- 给定一个复数
z
=
a
+
b
i
z = a + bi
z=a+bi(其中
a
a
a 是实部,
b
b
b 是虚部,
i
i
i 是虚数单位,
i
2
=
−
1
i^2 = -1
i2=−1),其共轭复数记作
z
‾
\overline{z}
z,定义为:
z ‾ = a − b i \overline{z} = a - bi z=a−bi - 简单来说,共轭操作就是将复数的虚部取反。
例子
- z = 3 + 4 i z = 3 + 4i z=3+4i,则其共轭为 z ‾ = 3 − 4 i \overline{z} = 3 - 4i z=3−4i。
- z = 5 z = 5 z=5(纯实数),则其共轭为 z ‾ = 5 \overline{z} = 5 z=5。
- z = 7 i z = 7i z=7i(纯虚数),则其共轭为 z ‾ = − 7 i \overline{z} = -7i z=−7i。
2. 什么是共轭转置
共轭转置(Conjugate Transpose 或 Hermitian Transpose)是对矩阵的一个复数操作。
- 定义:给定一个复数矩阵
A
A
A,其共轭转置记作
A
†
A^\dagger
A† 或
A
H
A^H
AH,它是矩阵的转置和共轭操作的组合:
A † = ( A ‾ ) T A^\dagger = (\overline{A})^T A†=(A)T
即:- 先对矩阵中的每个元素取共轭。
- 然后对矩阵进行转置(行变列,列变行)。
公式表示
如果矩阵
A
A
A 为:
A
=
[
z
11
z
12
…
z
1
n
z
21
z
22
…
z
2
n
⋮
⋮
⋱
⋮
z
m
1
z
m
2
…
z
m
n
]
A = \begin{bmatrix} z_{11} & z_{12} & \dots & z_{1n} \\ z_{21} & z_{22} & \dots & z_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{m1} & z_{m2} & \dots & z_{mn} \end{bmatrix}
A=
z11z21⋮zm1z12z22⋮zm2……⋱…z1nz2n⋮zmn
那么共轭转置矩阵
A
†
A^\dagger
A† 为:
A
†
=
[
z
11
‾
z
21
‾
…
z
m
1
‾
z
12
‾
z
22
‾
…
z
m
2
‾
⋮
⋮
⋱
⋮
z
1
n
‾
z
2
n
‾
…
z
m
n
‾
]
A^\dagger = \begin{bmatrix} \overline{z_{11}} & \overline{z_{21}} & \dots & \overline{z_{m1}} \\ \overline{z_{12}} & \overline{z_{22}} & \dots & \overline{z_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{z_{1n}} & \overline{z_{2n}} & \dots & \overline{z_{mn}} \end{bmatrix}
A†=
z11z12⋮z1nz21z22⋮z2n……⋱…zm1zm2⋮zmn
例子
-
对一个复数矩阵:
A = [ 1 + i 2 − i 3 4 + 2 i ] A = \begin{bmatrix} 1 + i & 2 - i \\ 3 & 4 + 2i \end{bmatrix} A=[1+i32−i4+2i]
其共轭转置为:
A † = [ 1 − i 3 2 + i 4 − 2 i ] A^\dagger = \begin{bmatrix} 1 - i & 3 \\ 2 + i & 4 - 2i \end{bmatrix} A†=[1−i2+i34−2i] -
对一个纯实数矩阵(没有虚部):
B = [ 1 2 3 4 ] B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B=[1324]
由于没有虚部,共轭操作没有影响,因此 B † = B T B^\dagger = B^T B†=BT:
B † = [ 1 3 2 4 ] B^\dagger = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} B†=[1234]
3. 共轭转置的性质
(1) 与转置的区别
- 转置 A T A^T AT:只交换行与列。
- 共轭转置 A † A^\dagger A†:交换行与列,同时对每个元素取共轭。
(2) 自共轭矩阵(Hermitian Matrix)
如果一个矩阵满足 A † = A A^\dagger = A A†=A,那么 A A A 称为自共轭矩阵(或 Hermitian 矩阵)。这是一种特殊的矩阵,类似于实数域上的对称矩阵。
(3) 共轭转置的逆
如果矩阵 A A A 是酉矩阵( U † U = U U † = E U^\dagger U = U U^\dagger = E U†U=UU†=E),则 U † = U − 1 U^\dagger = U^{-1} U†=U−1,类似于正交矩阵的性质 W T = W − 1 W^T = W^{-1} WT=W−1。
(4) 共轭转置与矩阵乘法
如果
A
A
A 和
B
B
B 是两个复数矩阵,则:
(
A
B
)
†
=
B
†
A
†
(AB)^\dagger = B^\dagger A^\dagger
(AB)†=B†A†
这类似于转置的性质
(
A
B
)
T
=
B
T
A
T
(AB)^T = B^T A^T
(AB)T=BTAT。
4. 应用场景
(1) 量子力学
在量子力学中,态矢量和算符经常是复数形式的,共轭转置广泛用于描述物理量。
- 自共轭矩阵(Hermitian 矩阵)代表可观测量(如能量、动量)。
- 酉矩阵(Unitary 矩阵)描述量子态的演化。
(2) 奇异值分解(SVD)
在奇异值分解中,左奇异矩阵 U U U 和右奇异矩阵 V V V 通常是酉矩阵,因此满足 U † U = E U^\dagger U = E U†U=E 和 V † V = E V^\dagger V = E V†V=E。
(3) 信号处理
在傅里叶变换等操作中,复数矩阵的共轭转置用于处理复数信号的相关性。
(4) 机器学习
在复杂特征值分解和复数向量的降维中,共轭转置经常出现。
5. 总结
- 共轭:复数操作,取虚部的相反数。
- 共轭转置:矩阵操作,包括共轭和转置两步。
- 重要性质:
- 保持复内积。
- A † A^\dagger A† 是 Hermitian 矩阵和酉矩阵等概念的基础。
- 在复数向量空间中,共轭转置具有与转置类似的作用,但能处理复数。