概率类型及其定义、公式和计算示例

在概率论中,概率的概念被广泛应用于统计学、机器学习以及日常生活中。根据不同的应用场景和性质,概率可以被划分为多种类型,如联合概率、边缘概率、条件概率等。本文将全面介绍常见的概率类型,并配以计算示例,帮助大家更好地理解。


1. 基本概率

1.1 单点概率 (Simple Probability)

定义:单点概率描述一个事件发生的概率。
公式
P ( A ) P(A) P(A)
其中 A A A 是事件, 0 ≤ P ( A ) ≤ 1 0 \leq P(A) \leq 1 0P(A)1

示例

假设掷一枚硬币,正面向上的概率为 P ( 正面 ) = 0.5 P(正面) = 0.5 P(正面)=0.5
如果掷了 100 次,期望正面向上的次数为:
E [ X ] = n ⋅ P ( A ) = 100 ⋅ 0.5 = 50 \mathbb{E}[X] = n \cdot P(A) = 100 \cdot 0.5 = 50 E[X]=nP(A)=1000.5=50


2. 复合概率

2.1 联合概率 (Joint Probability)

定义:两个或多个事件同时发生的概率。
公式
P ( A ∩ B ) = { P ( A ) ⋅ P ( B ) , 如果  A , B  独立 ; P ( A ∣ B ) ⋅ P ( B ) , 如果  A , B  非独立 . P(A \cap B) = \begin{cases} P(A) \cdot P(B), & \text{如果 } A, B \text{ 独立}; \\ P(A|B) \cdot P(B), & \text{如果 } A, B \text{ 非独立}. \end{cases} P(AB)={P(A)P(B),P(AB)P(B),如果 A,B 独立;如果 A,B 非独立.

示例

从一副扑克牌中随机抽两张牌,问两张都是红心的概率(不放回)。
第一张是红心的概率为:
P ( A ) = 13 52 P(A) = \frac{13}{52} P(A)=5213
第二张是红心的概率(条件概率)为:
P ( B ∣ A ) = 12 51 P(B|A) = \frac{12}{51} P(BA)=5112
联合概率为:
P ( A ∩ B ) = P ( A ) ⋅ P ( B ∣ A ) = 13 52 ⋅ 12 51 = 1 17 ≈ 0.0588 P(A \cap B) = P(A) \cdot P(B|A) = \frac{13}{52} \cdot \frac{12}{51} = \frac{1}{17} \approx 0.0588 P(AB)=P(A)P(BA)=52135112=1710.0588


2.2 边缘概率 (Marginal Probability)

定义:联合概率分布中忽略其他变量后的单个事件概率。
公式
P ( A ) = ∑ B P ( A , B ) (离散) 或 P ( A ) = ∫ P ( A , B )   d B (连续) . P(A) = \sum_{B} P(A, B) \quad \text{(离散)} \quad 或 \quad P(A) = \int P(A, B) \, dB \quad \text{(连续)}. P(A)=BP(A,B)(离散)P(A)=P(A,B)dB(连续).

示例

假设一个工厂生产的产品中,30% 来自机器 A,70% 来自机器 B。
机器 A 的不合格率为 5%,机器 B 的不合格率为 10%。问总体不合格率是多少?
P ( 不合格 ) = P ( 不合格|A ) ⋅ P ( A ) + P ( 不合格|B ) ⋅ P ( B ) P(\text{不合格}) = P(\text{不合格|A}) \cdot P(A) + P(\text{不合格|B}) \cdot P(B) P(不合格)=P(不合格|A)P(A)+P(不合格|B)P(B)
= 0.05 ⋅ 0.3 + 0.10 ⋅ 0.7 = 0.015 + 0.07 = 0.085 = 0.05 \cdot 0.3 + 0.10 \cdot 0.7 = 0.015 + 0.07 = 0.085 =0.050.3+0.100.7=0.015+0.07=0.085
总体不合格率为 8.5%。


2.3 条件概率 (Conditional Probability)

定义:在某事件已知发生的条件下,另一个事件发生的概率。
公式
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) , P ( B ) > 0 P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0 P(AB)=P(B)P(AB),P(B)>0

示例

某考试通过率为 60%,已知男生比例为 50%,且男生通过率为 70%。问某人通过考试且是男生的概率:
P ( 通过 ∣ 男 ) = 0.7 , P ( 男 ) = 0.5 P(通过|男) = 0.7, \quad P(男) = 0.5 P(通过)=0.7,P()=0.5
联合概率:
P ( 通过 ∩ 男 ) = P ( 通过 ∣ 男 ) ⋅ P ( 男 ) = 0.7 ⋅ 0.5 = 0.35 P(通过 \cap 男) = P(通过|男) \cdot P(男) = 0.7 \cdot 0.5 = 0.35 P(通过)=P(通过)P()=0.70.5=0.35


3. 特殊概率

3.1 全概率 (Total Probability)

定义:通过已知条件的概率,计算总体事件的概率。
公式
P ( A ) = ∑ i P ( A ∣ B i ) ⋅ P ( B i ) P(A) = \sum_{i} P(A|B_i) \cdot P(B_i) P(A)=iP(ABi)P(Bi)

示例

继续上一个例子,假设总共分两类学生(男/女),问总体通过率是多少?
P ( 通过 ) = P ( 通过 ∣ 男 ) ⋅ P ( 男 ) + P ( 通过 ∣ 女 ) ⋅ P ( 女 ) P(通过) = P(通过|男) \cdot P(男) + P(通过|女) \cdot P(女) P(通过)=P(通过)P()+P(通过)P()
= 0.7 ⋅ 0.5 + 0.5 ⋅ 0.5 = 0.35 + 0.25 = 0.6 = 0.7 \cdot 0.5 + 0.5 \cdot 0.5 = 0.35 + 0.25 = 0.6 =0.70.5+0.50.5=0.35+0.25=0.6


3.2 贝叶斯概率 (Bayesian Probability)

定义:通过条件概率反推事件的概率,计算后验概率。
公式
P ( B ∣ A ) = P ( A ∣ B ) ⋅ P ( B ) P ( A ) , P ( A ) > 0 P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}, \quad P(A) > 0 P(BA)=P(A)P(AB)P(B),P(A)>0

示例

已知总体通过率为 60%,某人通过考试且是男生的概率为 0.35,问该人是男生的概率是多少?
P ( 男 ∣ 通过 ) = P ( 通过 ∣ 男 ) ⋅ P ( 男 ) P ( 通过 ) P(男|通过) = \frac{P(通过|男) \cdot P(男)}{P(通过)} P(通过)=P(通过)P(通过)P()
= 0.7 ⋅ 0.5 0.6 = 0.35 0.6 ≈ 0.583 = \frac{0.7 \cdot 0.5}{0.6} = \frac{0.35}{0.6} \approx 0.583 =0.60.70.5=0.60.350.583
该人是男生的概率为 58.3%。


4. 独立性与互斥性

4.1 独立事件的概率

定义:两个事件 A A A B B B 是独立的,如果一个事件的发生不影响另一个事件的发生。
性质
P ( A ∩ B ) = P ( A ) ⋅ P ( B ) P(A \cap B) = P(A) \cdot P(B) P(AB)=P(A)P(B)

示例

掷两枚硬币,问两次正面向上的概率是多少?
P ( 正面 1 ∩ 正面 2 ) = P ( 正面 1 ) ⋅ P ( 正面 2 ) = 0.5 ⋅ 0.5 = 0.25 P(正面1 \cap 正面2) = P(正面1) \cdot P(正面2) = 0.5 \cdot 0.5 = 0.25 P(正面1正面2)=P(正面1)P(正面2)=0.50.5=0.25


4.2 互斥事件的概率

定义:如果 A A A B B B 互斥,则它们不能同时发生。
性质
P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(AB)=P(A)+P(B)

示例

从扑克牌中随机抽一张,问是红心或黑桃的概率:
P ( 红心 ) = 13 52 , P ( 黑桃 ) = 13 52 P(红心) = \frac{13}{52}, \quad P(黑桃) = \frac{13}{52} P(红心)=5213,P(黑桃)=5213
P ( 红心 ∪ 黑桃 ) = P ( 红心 ) + P ( 黑桃 ) = 13 52 + 13 52 = 26 52 = 0.5 P(红心 \cup 黑桃) = P(红心) + P(黑桃) = \frac{13}{52} + \frac{13}{52} = \frac{26}{52} = 0.5 P(红心黑桃)=P(红心)+P(黑桃)=5213+5213=5226=0.5


总结

本文系统地介绍了概率的类型,包括基本概率、复合概率、特殊概率及相关性质,并通过实际计算示例加深理解。这些知识不仅是概率论的基础,也是统计建模、机器学习中的核心概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值