《动手做 AI Agent》
作者:黄佳
出版时间:2024年
关于作者:黄佳
黄佳,笔名“咖哥”,是新加坡科技研究局人工智能研究员,专注于NLP、大模型、AI在医疗和金融技术中的应用等领域。他拥有丰富的项目经验,并在生成式预训练语言模型、机器学习等技术领域出版了多本著作。黄佳还在极客时间、CSDN和深蓝学院等平台开设课程,教授关于大模型应用、机器学习等内容。他通过图解和幽默的方式,将复杂的技术概念通俗易懂地呈现出来,深受广大技术爱好者和学生的喜爱。
书籍简介
《动手做 AI Agent》是一本面向AI技术爱好者的实用指南,帮助读者通过动手实践掌握如何开发和应用AI智能代理(Agent)系统。书中详细讲解了Agent的基本概念、技术框架和应用场景,结合了7个具体的实操项目,从基础到进阶逐步引导读者掌握AI Agent的构建与实现。随着人工智能技术的飞速发展,Agent作为理解和生成自然语言、执行特定任务的智能体,已经成为了改变多个行业的关键技术之一。
本书适合对Agent技术感兴趣的开发者、研究人员、企业负责人、以及相关专业的师生等,全面介绍了从技术框架到工具、从实操项目到前沿进展的全方位内容。通过本书,读者可以深入了解Agent技术如何应用于办公自动化、智能调度、知识整合等领域,并带着读者通过实践项目接触到GPT-4、OpenAI Assistants API、LangChain、LlamaIndex等尖端技术。
编辑推荐
- 适读人群:本书适合对Agent技术感兴趣或致力于投身该领域的研究人员、开发人员、企业负责人,以及高等院校相关专业师生等阅读。
- 从零开始,循序渐进:以图解的方式从基础概念入手,逐步深入技术原理和应用,采用启发式教学帮助读者逐步理解Agent的各个方面。
- 理论与实践结合,7个Agent实例,技术路线全面:不仅介绍Agent的理论知识,还涉及相关的实际应用和案例分析,帮助读者更好地理解理论知识在实际问题中的应用。
- 案例实用,内容丰富:语言幽默,内容多样,涵盖了Agent的多个主题,如基本概念、技术原理、应用领域和案例分析,适合不同层次读者的需求。
核心内容
-
Agent基础概念
- 本书首先介绍了Agent的基本概念,探讨了AI Agent如何理解自然语言并执行特定任务。包括了Agent的大脑(大模型的推理能力)、感知力(语言交互和多模态能力)、行动力(语言输出和工具使用)等核心特性。
-
Agent技术框架
- 书中详细讲解了Agent的技术框架,介绍了基于大模型的推理引擎(如ReAct框架)及其应用。并深入讨论了Agent的核心技能、决策能力、记忆机制和推理框架。
-
实操项目:自动化办公与多功能选择引擎
- 本书通过具体的实例,带领读者实现多个功能强大的Agent,如自动化办公助手、通过Function Calling进行多功能选择、通过ReAct框架进行推理与行动的协同等。
-
前沿技术:GPT-4、LangChain、LlamaIndex
- 介绍了最新的Agent开发工具和技术,包括GPT-4模型、OpenAI Assistants API、LangChain、LlamaIndex等,帮助读者了解和掌握尖端技术的应用。
-
多Agent协作与高级应用
- 本书还涵盖了如何通过多Agent协作实现更复杂的应用,如自动化任务执行、智能调度、知识整合等,探索Agent在多领域的广泛应用。
-
Agent的前沿发展与挑战
- 本书最后展望了AI Agent的发展前景,包括自我演进的AI、具身智能、多Agent协作等未来发展趋势,探讨了该领域面临的技术挑战和机遇。
书籍结构与章节内容
-
第1章:何谓Agent,为何Agent
- 探讨了Agent的基本概念、Agent的大脑(大模型的推理能力)、感知力(语言交互与多模态能力)、行动力等。
-
第2章:基于大模型的Agent技术框架
- 介绍了Agent的四大要素、规划与决策能力、记忆机制、工具调用等技术框架,并重点讲解了ReAct框架的应用。
-
第3章:OpenAI API、LangChain和LlamaIndex
- 详细介绍了OpenAI API、LangChain和LlamaIndex的基本概念与应用,讲解了如何利用这些工具实现Agent开发。
-
第4章:Agent 1:自动化办公的实现
- 通过Assistants API和DALL·E 3模型创作PPT,展示如何通过Agent实现自动化办公。
-
第5章:Agent 2:多功能选择的引擎
- 讲解了如何通过Function Calling调用函数,实现多功能的Agent引擎。
-
第6章:Agent 3:推理与行动的协同
- 通过LangChain中的ReAct框架实现自动定价,展示了推理与行动协同工作的应用。
-
第7章:Agent 4:计划和执行的解耦
- 通过LangChain中的Plan-and-Execute策略实现智能调度库存,讲解了如何通过Agent管理资源。
-
第8章:Agent 5:知识的提取与整合
- 通过LlamaIndex实现检索增强生成,探索Agent在知识提取和整合中的应用。
-
第9章:Agent 6:GitHub的网红聚落
- 介绍了AutoGPT、BabyAGI和CAMEL的实际应用,展示了多种先进的Agent技术。
-
第10章:Agent 7:多Agent框架
- 介绍了AutoGen和MetaGPT框架的应用,展示了多Agent协作的实现和应用。
-
附录A:下一代Agent的诞生地
- 讨论了Agent领域的新思路,包括自主学习、多Agent合作、可信度评估、边缘系统部署等前沿研究。
推荐理由
-
零基础入门,循序渐进
- 本书从基础概念开始,逐步引导读者深入学习Agent的设计与实现,适合没有AI背景的初学者。
-
理论与实践相结合,7个项目实操
- 通过具体的案例,帮助读者了解如何将Agent技术应用于办公自动化、智能调度、知识整合等实际问题中。
-
结合前沿技术与工具
- 本书不仅讲解了Agent的基本原理,还介绍了最新的开发工具和技术,如GPT-4、LangChain、LlamaIndex等,让读者能够跟上技术前沿。
-
幽默风趣的语言,轻松易懂
- 黄佳通过幽默的语言和生动的案例,使得复杂的AI技术变得容易理解,增加了学习的趣味性。
总结
《动手做 AI Agent》是一本全面介绍AI智能代理技术的书籍,适合从事AI开发、研究及相关领域的从业者、学生以及对智能代理技术感兴趣的读者。通过理论与实践结合,黄佳带领读者深入理解Agent的设计与实现,探索Agent在办公自动化、智能调度、知识整合等领域的广泛应用。无论是新手还是专家,都能从中受益,全面提升AI Agent技术水平。
![]() |
|