负采样(Negative Sampling) 是 Word2Vec 中的一种技术,旨在提高训练效率,特别是解决模型训练中的计算瓶颈问题。负采样常与 Skip-gram 模型一起使用,可以有效地减少每次训练时需要计算的词汇数目,从而加速训练过程。
背景
在 Skip-gram 或 CBOW 模型中,训练的目标是预测给定上下文中的目标词。为了进行这种预测,通常会用 softmax 函数计算目标词和所有词汇之间的概率分布,公式如下:
P ( w t ∣ C ) = e v w t T v w c ∑ w ′ e v w ′ T v w c P(w_t | C) = \frac{e^{v_{w_t}^T v_{w_c}}}{\sum_{w'} e^{v_{w'}^T v_{w_c}}} P(wt∣C)=∑w′evw′TvwcevwtTvwc
其中, v w t v_{w_t} vwt 是目标词的词向量, v w c v_{w_c} vwc 是上下文词的词向量, w ′ w' w′ 遍历整个词汇表。
然而,随着词汇表的增大,计算这个概率分布时需要考虑整个词汇表的所有词,计算量非常庞大。因此,传统的 softmax 的计算在大规模数据集上非常低效。
负采样的思想
负采样的核心思想是:通过从词汇表中随机选择一些“负样本”来代替计算所有可能的上下文词,从而大幅度降低计算复杂度。
基本流程
-
正样本:每次训练时,对于给定的目标词 w t w_t wt 和上下文词 w c w_c wc,目标是将上下文词的概率最大化,这个部分就是正样本。
-
负样本:从词汇表中随机选择一些不相关的词作为负样本。通过负样本来训练模型,使模型学习到区分正样本和负样本的能力。即,目标是使目标词与上下文词的内积较大,目标词与负样本的内积较小。
-
损失函数:负采样采用了一个简化的 log-sigmoid 损失函数,它对于正样本和负样本分别进行处理。正样本的目标是提高它们的概率,负样本的目标是降低它们的概率。
数学公式
对于正样本 ( w t , w c ) (w_t, w_c) (wt,wc) 和负样本 ( w t , w neg ) (w_t, w_{\text{neg}}) (wt,wneg),负采样的损失函数如下:
L = − log σ ( v w t T v w c ) − ∑ i = 1 K log σ ( − v w t T v w neg i ) \mathcal{L} = - \log \sigma(v_{w_t}^T v_{w_c}) - \sum_{i=1}^{K} \log \sigma(-v_{w_t}^T v_{w_{\text{neg}_i}}) L=−logσ(vwtTvwc)−i=1∑Klogσ(−vwtTvwnegi)
其中:
- σ ( x ) \sigma(x) σ(x) 是 sigmoid 函数,定义为: σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+e−x1。
- v w t v_{w_t} vwt 和 v w c v_{w_c} vwc 是目标词和上下文词的词向量。
- v w neg i v_{w_{\text{neg}_i}} vwnegi 是负样本词 w neg w_{\text{neg}} wneg 的词向量。
- K K K 是负采样的数量,通常设置为 5 到 20 个负样本。
损失函数解释
- 第一项 − log σ ( v w t T v w c ) - \log \sigma(v_{w_t}^T v_{w_c}) −logσ(vwtTvwc) 是正样本的损失,它的目标是最大化目标词 w t w_t wt 和上下文词 w c w_c wc 的内积,从而提高它们的相关性。
- 第二项 − ∑ i = 1 K log σ ( − v w t T v w neg i ) - \sum_{i=1}^{K} \log \sigma(-v_{w_t}^T v_{w_{\text{neg}_i}}) −∑i=1Klogσ(−vwtTvwnegi) 是负样本的损失,它的目标是最小化目标词 w t w_t wt 和负样本词 w neg i w_{\text{neg}_i} wnegi 之间的内积,从而降低它们的相关性。
负采样的优点
-
提高计算效率:
负采样的核心优势是显著降低了每次训练时的计算量。与传统的 softmax 需要计算词汇表中每个词的概率不同,负采样只需要计算目标词和负样本的概率。因此,训练过程中只涉及 K K K 次计算,显著加速了训练过程。 -
有效处理大规模数据集:
对于大规模的词汇表,负采样使得在每次训练中只需要考虑小规模的负样本,而不需要计算所有词汇的概率,这对于大规模语料库来说尤为重要。 -
优化模型性能:
负采样不仅能够加速训练过程,还能在某些情况下提高模型的性能。通过引入负样本,模型学会了更加准确地区分上下文词和非上下文词,从而得到更精确的词向量。 -
内存占用少:
负采样的实现不需要将整个词汇表的词向量都加载到内存中,而是只加载目标词和负样本的词向量,大大节省了内存占用。
负采样的缺点
-
需要选择负样本:
负采样的性能依赖于负样本的选择。尽管随机选择负样本可以加速训练,但选择的负样本质量会影响模型效果。若负样本选择不当,可能会导致模型无法有效学习。 -
并不能捕捉所有语义信息:
负采样只关心目标词和负样本之间的区别,忽略了对整个词汇表的细粒度学习,可能会错过某些细节的语义信息。 -
损失函数的简化:
负采样通过简化的损失函数来减少计算量,但这种简化也导致了模型在某些复杂任务中的表现不如传统的 softmax。
负采样的应用
负采样广泛应用于词嵌入学习,特别是在 Word2Vec 模型的训练中。通过使用负采样,Skip-gram 和 CBOW 模型能够更快速地训练大规模的词向量,并且生成高质量的词嵌入,广泛用于各种自然语言处理任务,如:
- 词相似度计算:使用训练得到的词向量可以计算不同词之间的相似度。
- 信息检索:通过计算查询与文档的相似度来进行信息检索。
- 推荐系统:负采样也可以用于推荐系统中,用于学习用户和物品的潜在表示。
- 机器翻译和文本生成:生成的词向量可作为机器翻译模型和生成模型的输入。
总结
负采样 是 Word2Vec 中用来加速模型训练的一种技术。它通过从词汇表中随机选择一些负样本来减少计算量,从而使模型能够在大规模数据集上高效训练。负采样在 Skip-gram 和 CBOW 模型中得到了广泛应用,是生成高质量词向量的核心技术之一。虽然负采样在计算效率上有明显优势,但它也有一定的局限性,特别是在负样本选择和细节学习方面。