【word2vec】负采样(Negative Sampling)

负采样(Negative Sampling)Word2Vec 中的一种技术,旨在提高训练效率,特别是解决模型训练中的计算瓶颈问题。负采样常与 Skip-gram 模型一起使用,可以有效地减少每次训练时需要计算的词汇数目,从而加速训练过程。

背景

Skip-gramCBOW 模型中,训练的目标是预测给定上下文中的目标词。为了进行这种预测,通常会用 softmax 函数计算目标词和所有词汇之间的概率分布,公式如下:

P ( w t ∣ C ) = e v w t T v w c ∑ w ′ e v w ′ T v w c P(w_t | C) = \frac{e^{v_{w_t}^T v_{w_c}}}{\sum_{w'} e^{v_{w'}^T v_{w_c}}} P(wtC)=wevwTvwcevwtTvwc

其中, v w t v_{w_t} vwt 是目标词的词向量, v w c v_{w_c} vwc 是上下文词的词向量, w ′ w' w 遍历整个词汇表。

然而,随着词汇表的增大,计算这个概率分布时需要考虑整个词汇表的所有词,计算量非常庞大。因此,传统的 softmax 的计算在大规模数据集上非常低效。

负采样的思想

负采样的核心思想是:通过从词汇表中随机选择一些“负样本”来代替计算所有可能的上下文词,从而大幅度降低计算复杂度。

基本流程
  1. 正样本:每次训练时,对于给定的目标词 w t w_t wt 和上下文词 w c w_c wc,目标是将上下文词的概率最大化,这个部分就是正样本。

  2. 负样本:从词汇表中随机选择一些不相关的词作为负样本。通过负样本来训练模型,使模型学习到区分正样本和负样本的能力。即,目标是使目标词与上下文词的内积较大,目标词与负样本的内积较小。

  3. 损失函数:负采样采用了一个简化的 log-sigmoid 损失函数,它对于正样本和负样本分别进行处理。正样本的目标是提高它们的概率,负样本的目标是降低它们的概率。

数学公式

对于正样本 ( w t , w c ) (w_t, w_c) (wt,wc) 和负样本 ( w t , w neg ) (w_t, w_{\text{neg}}) (wt,wneg),负采样的损失函数如下:

L = − log ⁡ σ ( v w t T v w c ) − ∑ i = 1 K log ⁡ σ ( − v w t T v w neg i ) \mathcal{L} = - \log \sigma(v_{w_t}^T v_{w_c}) - \sum_{i=1}^{K} \log \sigma(-v_{w_t}^T v_{w_{\text{neg}_i}}) L=logσ(vwtTvwc)i=1Klogσ(vwtTvwnegi)

其中:

  • σ ( x ) \sigma(x) σ(x)sigmoid 函数,定义为: σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1
  • v w t v_{w_t} vwt v w c v_{w_c} vwc 是目标词和上下文词的词向量。
  • v w neg i v_{w_{\text{neg}_i}} vwnegi 是负样本词 w neg w_{\text{neg}} wneg 的词向量。
  • K K K 是负采样的数量,通常设置为 5 到 20 个负样本。
损失函数解释
  • 第一项 − log ⁡ σ ( v w t T v w c ) - \log \sigma(v_{w_t}^T v_{w_c}) logσ(vwtTvwc) 是正样本的损失,它的目标是最大化目标词 w t w_t wt 和上下文词 w c w_c wc 的内积,从而提高它们的相关性。
  • 第二项 − ∑ i = 1 K log ⁡ σ ( − v w t T v w neg i ) - \sum_{i=1}^{K} \log \sigma(-v_{w_t}^T v_{w_{\text{neg}_i}}) i=1Klogσ(vwtTvwnegi) 是负样本的损失,它的目标是最小化目标词 w t w_t wt 和负样本词 w neg i w_{\text{neg}_i} wnegi 之间的内积,从而降低它们的相关性。

负采样的优点

  1. 提高计算效率
    负采样的核心优势是显著降低了每次训练时的计算量。与传统的 softmax 需要计算词汇表中每个词的概率不同,负采样只需要计算目标词和负样本的概率。因此,训练过程中只涉及 K K K 次计算,显著加速了训练过程。

  2. 有效处理大规模数据集
    对于大规模的词汇表,负采样使得在每次训练中只需要考虑小规模的负样本,而不需要计算所有词汇的概率,这对于大规模语料库来说尤为重要。

  3. 优化模型性能
    负采样不仅能够加速训练过程,还能在某些情况下提高模型的性能。通过引入负样本,模型学会了更加准确地区分上下文词和非上下文词,从而得到更精确的词向量。

  4. 内存占用少
    负采样的实现不需要将整个词汇表的词向量都加载到内存中,而是只加载目标词和负样本的词向量,大大节省了内存占用。

负采样的缺点

  1. 需要选择负样本
    负采样的性能依赖于负样本的选择。尽管随机选择负样本可以加速训练,但选择的负样本质量会影响模型效果。若负样本选择不当,可能会导致模型无法有效学习。

  2. 并不能捕捉所有语义信息
    负采样只关心目标词和负样本之间的区别,忽略了对整个词汇表的细粒度学习,可能会错过某些细节的语义信息。

  3. 损失函数的简化
    负采样通过简化的损失函数来减少计算量,但这种简化也导致了模型在某些复杂任务中的表现不如传统的 softmax。

负采样的应用

负采样广泛应用于词嵌入学习,特别是在 Word2Vec 模型的训练中。通过使用负采样,Skip-gram 和 CBOW 模型能够更快速地训练大规模的词向量,并且生成高质量的词嵌入,广泛用于各种自然语言处理任务,如:

  • 词相似度计算:使用训练得到的词向量可以计算不同词之间的相似度。
  • 信息检索:通过计算查询与文档的相似度来进行信息检索。
  • 推荐系统:负采样也可以用于推荐系统中,用于学习用户和物品的潜在表示。
  • 机器翻译和文本生成:生成的词向量可作为机器翻译模型和生成模型的输入。

总结

负采样 是 Word2Vec 中用来加速模型训练的一种技术。它通过从词汇表中随机选择一些负样本来减少计算量,从而使模型能够在大规模数据集上高效训练。负采样在 Skip-gramCBOW 模型中得到了广泛应用,是生成高质量词向量的核心技术之一。虽然负采样在计算效率上有明显优势,但它也有一定的局限性,特别是在负样本选择和细节学习方面。

### 负采样的原理 在Word2Vec的Skip-gram模型中,目标是通过给定的中心词预测其上下文词。然而,当词汇表非常大时,计算所有词的预测概率会变得非常耗时。为了解决这个问题,负采样技术被引入[^2]。 负采样的核心思想是在每次更新权重时仅考虑一小部分负样本而不是全部词汇表中的单词。具体来说,在训练过程中对于每个正样本(即实际出现在上下文中的一对词语),随机抽取少量未出现在当前上下文环境中的其他词作为负样本。这些负样本用于近似全量softmax函数,从而减少计算复杂度并加速收敛过程。 ### 负采样的实现方法 为了更好地理解如何实现负采样,下面给出了一段Python代码示例来展示这一机制: ```python import numpy as np def sample_table(vocab_size, power=0.75): """构建负采样表格""" word_freq = get_word_frequency() # 获取词汇频率分布 train_words_pow = np.array(list(word_freq.values())) ** power words_pow_sum = sum(train_words_pow) ratio = train_words_pow / words_pow_sum count = np.round(ratio * vocab_size) sampled_table = [] for wid, c in enumerate(count): sampled_table += [wid]*int(c) return sampled_table def negative_sampling(target_index, context_indices, num_neg_samples, table): """获取指定数量的负样本""" neg_sampled_ids = [] while len(neg_sampled_ids) < num_neg_samples: nid = random.choice(table) if nid not in context_indices and nid != target_index: neg_sampled_ids.append(nid) return neg_sampled_ids ``` 上述`sample_table()`函数基于词汇频次创建了一个适合于高效抽样的查找表;而`negative_sampling()`则利用此表快速选取一定数目的负样本索引。这种方法不仅提高了效率还保持了较好的准确性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值