BLOOM(BigScience Large Open-science Open-access Multilingual Language Model)模型

BLOOM(BigScience Large Open-science Open-access Multilingual Language Model)模型

BLOOM(BigScience Large Open-science Open-access Multilingual Language Model)是 2022 年由 BigScience 项目发布的一款开源大型语言模型(LLM),它是 首个完全开源、支持 46 种语言和 13 种编程语言的 GPT-3 级别语言模型

论文BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

BLOOM 旨在提供高质量的开源替代方案,促进学术界和工业界的 AI 研究,是 GPT-3 之外最强大的开源大语言模型之一

BigScience 项目是一个由 Hugging Face 发起的全球协作研究项目,旨在探讨和推动大规模预训练语言模型的开发、应用及其相关伦理和社会影响。


1. 为什么需要 BLOOM?

在 GPT-3 发布后,OpenAI 选择 闭源,限制了学术界和企业的研究与应用。BigScience 作为一个全球合作 AI 研究计划,发起了 BLOOM 项目,目标是:

  1. 创建一个真正开源的 GPT-3 级别大模型,供研究和商业用途。
  2. 支持多语言(包括低资源语言),让 AI 更具包容性
  3. 提供更透明的 AI 研究平台,促进开源 AI 发展
  • BLOOM 是 GPT-3 的最强开源替代方案
  • 支持 46 种语言,涵盖低资源语言
  • 允许学术研究和商业应用,自由使用

2. BLOOM 的核心版本

BLOOM 提供了 多个参数规模的模型,适用于不同计算需求:

BLOOM 版本参数量适用场景
BLOOM-560M5.6 亿适用于轻量级 NLP 任务
BLOOM-1.1B11 亿适用于文本生成、分类
BLOOM-3B30 亿适用于多语言任务
BLOOM-7.1B71 亿适用于代码生成、问答
BLOOM-176B1760 亿GPT-3 级别模型,适用于超大规模 NLP 任务
  • BLOOM-7B 可在消费级 GPU(如 RTX 3090/4090)上运行
  • BLOOM-176B 需要高端服务器(如 A100, H100)

3. BLOOM 的多语言能力

BLOOM 支持 46 种人类语言和 13 种编程语言,是目前 支持最多语言的大模型之一

3.1 主要支持语言

  • 英语、法语、德语、西班牙语、中文、阿拉伯语、印地语、葡萄牙语、日语、韩语高资源语言
  • 斯瓦希里语、乌尔都语、印尼语、孟加拉语、泰语中等资源语言
  • 巴斯克语、加泰罗尼亚语、马耳他语、瓦隆语低资源语言

3.2 主要支持编程语言

  • Python, JavaScript, C, C++, Java, PHP, Go, Rust, Julia, Bash, TypeScript, SQL, LaTeX

  • BLOOM 适用于跨语言 NLP 任务

  • 相比 GPT-3,BLOOM 对低资源语言支持更好


4. BLOOM 在 Hugging Face transformers 库中的使用

BLOOM 可以通过 Hugging Face 直接加载并使用

4.1 安装 transformers

pip install transformers

4.2 加载 BLOOM 分词器

from transformers import AutoTokenizer

# 加载 BLOOM 预训练的分词器
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-7b1")

# 对文本进行分词
text = "What is the future of AI?"
tokens = tokenizer(text, return_tensors="pt")

print(tokens)

4.3 加载 BLOOM 并进行文本生成

from transformers import AutoModelForCausalLM

# 加载 BLOOM 预训练模型
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-7b1")

# 生成文本
outputs = model.generate(**tokens, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

5. BLOOM 的应用场景

BLOOM 适用于 各种 NLP 任务

  • 文本生成(新闻、小说、论文写作)

  • 多语言翻译

  • 对话系统(Chatbot)

  • 问答系统(QA)

  • 代码生成

  • 机器翻译

  • 自动摘要

  • 语义搜索

  • 相比 GPT-3,BLOOM 更适合多语言 NLP 任务

  • 相比 GPT-4,BLOOM 适用于低成本 AI 研究和本地部署


6. BLOOM 与其他 Transformer 模型的对比

模型开源/闭源参数量优化点适用任务
GPT-3闭源175B计算量大,成本高商业 AI 助手
BLOOM-176B开源176B多语言支持研究 NLP 任务
OPT-175B开源175B计算优化,节能 2 倍开源 NLP 研究
GPT-4闭源未公开多模态优化AI 生成内容
LLaMA 2开源7B, 13B, 65B高效推理,适用于本地部署NLP任务、企业AI
  • BLOOM 是 GPT-3 之外最强的开源 NLP 语言模型之一
  • 相比 GPT-3,BLOOM 提供更强的多语言支持

7. BLOOM 的优势

  1. 完全开源:相比 GPT-3/GPT-4 的闭源,BLOOM 完全开源,适用于 学术研究企业自建 AI
  2. 多语言支持:BLOOM 支持 46 种语言,涵盖低资源语言,相比 GPT-3 更具包容性
  3. 高效计算:在 相同参数规模下,BLOOM 计算效率比 GPT-3 高,适用于 低成本 AI 研究
  4. 兼容 Hugging Face:可以 直接加载到 Hugging Face transformers 进行推理和微调

8. 结论

  1. BLOOM 由 BigScience 开发,是 GPT-3 的开源替代方案,支持 176B 参数规模
  2. 相比 GPT-3,BLOOM 计算更高效,特别适用于多语言 NLP 任务
  3. 支持 Hugging Face transformers 直接加载,适用于文本生成、对话、翻译、问答等任务
  4. 相比 GPT-4,BLOOM 适用于低成本 AI 研究,适合本地部署和微调
  • BLOOM 是当前开源 AI 生态中最强的 GPT-3 级别语言模型之一,适用于 学术、企业、AI 研究等多个领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值