BLOOM(BigScience Large Open-science Open-access Multilingual Language Model)模型
BLOOM(BigScience Large Open-science Open-access Multilingual Language Model)是 2022 年由 BigScience 项目发布的一款开源大型语言模型(LLM),它是 首个完全开源、支持 46 种语言和 13 种编程语言的 GPT-3 级别语言模型。
论文:BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
BLOOM 旨在提供高质量的开源替代方案,促进学术界和工业界的 AI 研究,是 GPT-3 之外最强大的开源大语言模型之一。
BigScience 项目是一个由 Hugging Face 发起的全球协作研究项目,旨在探讨和推动大规模预训练语言模型的开发、应用及其相关伦理和社会影响。
1. 为什么需要 BLOOM?
在 GPT-3 发布后,OpenAI 选择 闭源,限制了学术界和企业的研究与应用。BigScience 作为一个全球合作 AI 研究计划,发起了 BLOOM 项目,目标是:
- 创建一个真正开源的 GPT-3 级别大模型,供研究和商业用途。
- 支持多语言(包括低资源语言),让 AI 更具包容性。
- 提供更透明的 AI 研究平台,促进开源 AI 发展。
- BLOOM 是 GPT-3 的最强开源替代方案
- 支持 46 种语言,涵盖低资源语言
- 允许学术研究和商业应用,自由使用
2. BLOOM 的核心版本
BLOOM 提供了 多个参数规模的模型,适用于不同计算需求:
BLOOM 版本 | 参数量 | 适用场景 |
---|---|---|
BLOOM-560M | 5.6 亿 | 适用于轻量级 NLP 任务 |
BLOOM-1.1B | 11 亿 | 适用于文本生成、分类 |
BLOOM-3B | 30 亿 | 适用于多语言任务 |
BLOOM-7.1B | 71 亿 | 适用于代码生成、问答 |
BLOOM-176B | 1760 亿 | GPT-3 级别模型,适用于超大规模 NLP 任务 |
- BLOOM-7B 可在消费级 GPU(如 RTX 3090/4090)上运行
- BLOOM-176B 需要高端服务器(如 A100, H100)
3. BLOOM 的多语言能力
BLOOM 支持 46 种人类语言和 13 种编程语言,是目前 支持最多语言的大模型之一。
3.1 主要支持语言
- 英语、法语、德语、西班牙语、中文、阿拉伯语、印地语、葡萄牙语、日语、韩语 等 高资源语言
- 斯瓦希里语、乌尔都语、印尼语、孟加拉语、泰语 等 中等资源语言
- 巴斯克语、加泰罗尼亚语、马耳他语、瓦隆语 等 低资源语言
3.2 主要支持编程语言
-
Python, JavaScript, C, C++, Java, PHP, Go, Rust, Julia, Bash, TypeScript, SQL, LaTeX
-
BLOOM 适用于跨语言 NLP 任务
-
相比 GPT-3,BLOOM 对低资源语言支持更好
4. BLOOM 在 Hugging Face transformers
库中的使用
BLOOM 可以通过 Hugging Face 直接加载并使用。
4.1 安装 transformers
pip install transformers
4.2 加载 BLOOM 分词器
from transformers import AutoTokenizer
# 加载 BLOOM 预训练的分词器
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-7b1")
# 对文本进行分词
text = "What is the future of AI?"
tokens = tokenizer(text, return_tensors="pt")
print(tokens)
4.3 加载 BLOOM 并进行文本生成
from transformers import AutoModelForCausalLM
# 加载 BLOOM 预训练模型
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-7b1")
# 生成文本
outputs = model.generate(**tokens, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
5. BLOOM 的应用场景
BLOOM 适用于 各种 NLP 任务:
-
文本生成(新闻、小说、论文写作)
-
多语言翻译
-
对话系统(Chatbot)
-
问答系统(QA)
-
代码生成
-
机器翻译
-
自动摘要
-
语义搜索
-
相比 GPT-3,BLOOM 更适合多语言 NLP 任务
-
相比 GPT-4,BLOOM 适用于低成本 AI 研究和本地部署
6. BLOOM 与其他 Transformer 模型的对比
模型 | 开源/闭源 | 参数量 | 优化点 | 适用任务 |
---|---|---|---|---|
GPT-3 | 闭源 | 175B | 计算量大,成本高 | 商业 AI 助手 |
BLOOM-176B | 开源 | 176B | 多语言支持 | 研究 NLP 任务 |
OPT-175B | 开源 | 175B | 计算优化,节能 2 倍 | 开源 NLP 研究 |
GPT-4 | 闭源 | 未公开 | 多模态优化 | AI 生成内容 |
LLaMA 2 | 开源 | 7B, 13B, 65B | 高效推理,适用于本地部署 | NLP任务、企业AI |
- BLOOM 是 GPT-3 之外最强的开源 NLP 语言模型之一
- 相比 GPT-3,BLOOM 提供更强的多语言支持
7. BLOOM 的优势
- 完全开源:相比 GPT-3/GPT-4 的闭源,BLOOM 完全开源,适用于 学术研究 和 企业自建 AI。
- 多语言支持:BLOOM 支持 46 种语言,涵盖低资源语言,相比 GPT-3 更具包容性。
- 高效计算:在 相同参数规模下,BLOOM 计算效率比 GPT-3 高,适用于 低成本 AI 研究。
- 兼容 Hugging Face:可以 直接加载到 Hugging Face
transformers
进行推理和微调。
8. 结论
- BLOOM 由 BigScience 开发,是 GPT-3 的开源替代方案,支持 176B 参数规模。
- 相比 GPT-3,BLOOM 计算更高效,特别适用于多语言 NLP 任务。
- 支持 Hugging Face
transformers
直接加载,适用于文本生成、对话、翻译、问答等任务。 - 相比 GPT-4,BLOOM 适用于低成本 AI 研究,适合本地部署和微调。
- BLOOM 是当前开源 AI 生态中最强的 GPT-3 级别语言模型之一,适用于 学术、企业、AI 研究等多个领域。