【scikit-learn】sklearn.ensemble.RandomForestClassifier 类:随机森林分类器

sklearn.ensemble.RandomForestClassifier(随机森林分类器)

RandomForestClassifiersklearn.ensemble 提供的 随机森林(Random Forest)分类模型,它通过 集成多棵决策树 提高分类性能,减少过拟合,适用于 分类任务


1. RandomForestClassifier 作用

  • 用于分类任务(如垃圾邮件检测、图像分类)。
  • 通过多个决策树投票,提高分类准确率
  • 减少过拟合,泛化能力强

2. RandomForestClassifier 代码示例

(1) 训练随机森林分类器

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# 加载数据
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

# 训练随机森林分类器
model = RandomForestClassifier(n_estimators=100, max_depth=3, random_state=42)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = model.score(X_test, y_test)
print("准确率:", accuracy)

解释

  • n_estimators=100:使用 100 棵决策树,提高稳定性。
  • max_depth=3:限制每棵树的深度,防止过拟合。
  • random_state=42:保证结果可复现。

3. RandomForestClassifier 主要参数

RandomForestClassifier(n_estimators=100, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, bootstrap=True, random_state=None)
参数说明
n_estimators森林中的决策树数量(默认 100
criterion“gini”(默认) or “entropy”(基尼指数/信息增益)
max_depth每棵树的最大深度(默认 None,自动生长)
min_samples_split分裂内部节点的最小样本数(默认 2
min_samples_leaf叶子节点的最小样本数(默认 1
bootstrap是否使用自助采样(默认 True
random_state设置随机种子,保证结果可复现

4. 获取特征重要性

import numpy as np

feature_importances = model.feature_importances_
feature_names = iris.feature_names

# 输出特征重要性
for name, importance in zip(feature_names, feature_importances):
    print(f"{name}: {importance:.4f}")

解释

  • feature_importances_ 返回每个特征的重要性(数值越大,该特征越重要)。

5. 计算模型性能

from sklearn.metrics import classification_report

print("分类报告:\n", classification_report(y_test, y_pred))

解释

  • 计算精确率、召回率和 F1 分数

6. 决策树可视化

from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

plt.figure(figsize=(12, 8))
plot_tree(model.estimators_[0], feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()

解释

  • model.estimators_[0] 选择森林中的第一棵树进行可视化。

7. RandomForestClassifier vs. DecisionTreeClassifier

模型适用情况主要区别
DecisionTreeClassifier单棵决策树易过拟合,适合小数据
RandomForestClassifier多个决策树投票减少过拟合,泛化能力更强

示例

from sklearn.tree import DecisionTreeClassifier

tree_model = DecisionTreeClassifier(max_depth=3, random_state=42)
tree_model.fit(X_train, y_train)

print("决策树准确率:", tree_model.score(X_test, y_test))
print("随机森林准确率:", model.score(X_test, y_test))

解释

  • 随机森林比单棵决策树泛化能力更强

8. 适用场景

  • 分类任务(如 信用评分、垃圾邮件检测)。
  • 数据具有一定噪声,单棵决策树可能过拟合。
  • 需要特征选择,分析哪些特征更重要

9. 结论

  • RandomForestClassifier 适用于分类任务,基于多个决策树投票,提高分类准确率,支持 特征重要性分析,可视化决策树结构,比 单棵决策树泛化能力更强
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值