什么是迁移学习

迁移学习(Transfer Learning) 是指将一个领域中学到的知识应用到另一个不同但相关的领域中,尤其适用于数据稀缺、训练代价高的场景。


一、迁移学习的核心定义

迁移学习是指:将一个任务上训练好的模型(通常是大规模数据上训练好的)所获得的知识,迁移应用到另一个任务中,以提升新任务的性能或加速训练。

简单理解:

  • 不从零开始训练模型;
  • 而是借助已有模型的“经验”来帮助新任务。

二、迁移学习的形式

迁移学习主要有以下几种常见形式:

类型描述应用场景
特征迁移利用源任务中提取的特征作为目标任务的输入图像识别中常见
模型微调(Fine-tuning)用源模型初始化目标任务模型,然后在目标任务数据上进一步训练NLP和CV中最常用
参数迁移迁移部分参数,如共享前几层参数,后面几层根据目标任务微调多任务学习
实例迁移直接利用源领域的数据样本来辅助目标领域训练,可能加权样本分布相近
对抗迁移学习加入领域判别器,使模型能学习到领域不变的表示跨领域文本、图像学习

三、迁移学习的常见流程(以 NLP 为例)

以大语言模型如 BERT 为例,迁移学习通常分两步:

  1. 预训练(Pretraining)

    • 在海量通用数据(如Wikipedia、BookCorpus)上训练模型;
    • 学习通用语言知识、语义结构等。
  2. 微调(Fine-tuning)

    • 在特定任务(如情感分类、问答系统)的小数据集上继续训练;
    • 调整模型参数以适应新任务。
# 示例:使用 Hugging Face 微调一个预训练的 BERT 模型
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments

model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# 接下来加载你自己的数据并训练即可

四、迁移学习的优势

  • 减少训练成本:不必从零开始训练模型;
  • 降低数据需求:新任务只需较少的数据;
  • 更高准确率:使用已有知识能避免过拟合;
  • 广泛适应性:适合NLP、CV、语音、推荐系统等多领域。

五、大模型中的迁移学习(重点)

在大模型(如 GPT-4、LLaMA、Baichuan)中,迁移学习被广泛使用:

阶段描述
预训练模型在大规模通用数据上训练(如 GPT、BERT)
SFT(监督微调)在少量人工标注数据上进行微调
PEFT(参数高效微调)如LoRA、QLoRA,仅调整部分参数或引入Adapter模块

六、典型应用示例

  1. NLP
    • 使用 bert-base-chinese 微调做中文情感分类;
  2. 计算机视觉
    • 使用 ResNet 在 ImageNet 上预训练后迁移到肺炎X光图像分类;
  3. 语音识别
    • 使用 wav2vec2 微调成普通话识别模型;
  4. RAG 框架
    • 使用预训练的生成模型 + 检索模块微调适配企业知识问答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值