【LLM】Redis 作为向量库入门指南

爆肝整理,请不要吝啬你的赞和收藏。

目录

1. 前言

2. 前提条件

3. 创建向量索引

3.1 基础语法

3.2 参数解析

3.3 创建索引

3.4 验证索引

3.5 其它操作

4. 存储和更新向量

4.1 Hash

4.1.1 示例

4.1.2 解释

5.1 JSON

5.1.1 示例

5.1.2 解释

6. 查询命令简介

6.1 FT.SEARCH

6.2 FT.AGGREGATE 

6.3 与 SQL 语句对比

7. 向量搜索

7.1 KNN vector search

7.1.1 语法

7.1.2 参数解析

7.1.3 示例

7.2 Vector range queries

7.2.1 语法

7.2.2 参数解析

7.2.3 示例

8. 问题记录

8.1 问题一

9. 参考文档

10. SpringBoot 中的实现


1. 前言

Redis 本身并不是一个专门的向量数据库,但通过加载 RediSearch 或 RedisAI 模块,可以将 Redis 用作向量数据库,支持向量存储和相似性搜索。
这篇文章将介绍基于 RedisSearch 的Redis向量库实现。通过阅读本篇文章,你将学习到如何创建向量索引,如何存储和更新向量,如何进行向量搜索,如何使用阿里百炼 Embedding Model 文本向量化,如何集成到 SpringBoot 中并实现向量的存储和搜索等。

2. 前提条件

接下来,我们将以如何创建 Redis 向量索引开始。

3. 创建向量索引

Redis 在你的数据上维护一个二级索引,这个索引有一个定义好的模式(包括向量字段和元数据)。Redis 支持 FLAT 和 HNSW 向量索引类型。
通过 FT.CREATE 创建索引,指定向量字段的类型和距离度量方式。

3.1 基础语法

FT.CREATE <index_name>
  ON <storage_type>
  PREFIX 1 <key_prefix>
  SCHEMA ... <field_name> VECTOR <algorithm> <index_attribute_count> <index_attribute_name1> <index_attribute_value1>
    [<index_attribute_name2> <index_attribute_value2> ...]

3.2 参数解析

  • <index_name>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值