机器学习小结

关于svm和神经网络的恩爱情仇

两者都是在寻找一个可分割的超平面,单层神经网络的感知机是线性可分,非线性不可分的。有局限性。这时候svm出现了,通过核函数解决了非线性数据的问题。后来随着硬件的发展解决了多层神经网络的计算问题,神经网络也可以做非线性数据的分割问题了

 

至于svm怎么寻找超平面的,大概分三步

第一步,线性可分,求距离各个样本距离最短的超平面。

第二步,线性不太可分,引入松弛变量,然后软间隔最大化。也是个线性分类器

第三步,线性不可分,引入核函数,低纬到高维映射。

 

svm具体求解过程:

svm的关键参数:

 

参考资料:https://blog.csdn.net/szlcw1/article/details/52259668

LIBSVM:http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值