📚文章结构总览:
- 文生视频到底是啥?程序员能做什么?
- 大厂模型汇总 & 部署思路(Ali、Pika、Runway)
- 快速上手:从文字生成视频帧(代码实战)
- 视频补帧与合成(插帧算法 + ffmpeg)
- 生成+控制:提示词工程、面部控制、风格迁移
- 本地部署 vs 云端调用:成本与稳定性分析
- 实用场景:AI短视频制作、虚拟主播生成、动画草稿
- 附录:文生视频API大全、模型推荐、关键参数表
📌第一章:什么是“文生视频”?
Text-to-Video(T2V)是指从自然语言提示中,生成连续视频帧的技术。它结合了 Stable Diffusion 的生成能力、视频补帧插值技术(如RIFE)、以及字幕驱动、3D建模等工具,构成了多模态AI生成链条。
程序员能做的:
- 接入模型 → 脚本化批量生成视频
- 通过关键词控制画面风格/主体动作
- 自定义模板 → 做自动化视频生成平台
🧪第二章:主流文生视频模型盘点
模型 | 机构 | 优势 | 调用方式 |
---|---|---|---|
ModelScope T2V | 阿里 | 中文适配好,免费可用 | Python SDK、Web |
Runway Gen2 | Runway ML | 效果惊艳,支持图片+文字 | API |
Pika Labs | Pika | 高帧率、动画感强 | 在线生成 |
SVD | Stability AI | 开源,支持本地部署 | Diffusers |
👉 本文以 ModelScope T2V 为入门实战例子。