AI 修复老照片的核心技术主要涉及 深度学习 和 计算机视觉,具体来说,它利用 神经网络 来自动填补缺损、增强分辨率、恢复颜色、去除噪点等。以下是 AI 修复老照片的主要步骤:
1. 图像预处理
老照片可能存在 划痕、噪点、撕裂、折痕、颜色褪色 等问题。在修复前,AI 先对图片进行预处理:
- 去噪:利用 卷积神经网络(CNN) 识别并去除噪点,提高图片质量。
- 去划痕:使用 掩膜 R-CNN 识别照片中的划痕,并用 图像修复(Inpainting) 技术自动填补损坏区域。
- 锐化:提高边缘清晰度,使模糊部分更清晰。
2. 超分辨率增强(Super-Resolution)
老照片往往分辨率较低,放大会失真。AI 可以利用 超分辨率重建 技术,将低分辨率图像转换为高清图像:
- ESRGAN(Enhanced Super-Resolution GAN):基于 生成对抗网络(GAN),可以将模糊的照片转换为高分辨率图片,细节更加清晰自然。
- SwinIR:基于 Transformer 的图像超分方法,可以在修复过程中增强纹理细节,使图像更真实。
3. 颜色恢复(Colorization)
老照片一般是黑白的,AI 可通过 颜色迁移 技术进行自动上色:
- CNN+GAN 结合:使用 DeOldify 这样的 AI 上色模型,结合 神经网络风格迁移,模拟真实色彩。
- 深度学习数据库匹配:AI 通过学习大量彩色照片的数据,预测黑白照片中每个像素的可能颜色,并自动填充。
4. 面部修复与增强
老照片中的人脸通常模糊,AI 可以利用 面部修复技术 进行增强:
- GPEN(Generative Facial Prior Network):利用 AI 识别人脸的结构,并根据数据生成高清的五官和皮肤细节。
- GFPGAN(Generative Facial Prior for Blind Face Restoration):能自动修复低质量的人脸,填补模糊区域,使五官更自然。
- StyleGAN2:针对严重损坏的人脸,可以用 GAN 生成新面部特征,让照片看起来更加逼真。
5. 智能填充与缺失部分恢复
如果照片有缺失部分(如缺了一块、撕裂、人物部分丢失等),AI 可以通过 深度学习修复:
- 基于 CNN 的 Inpainting(图像补全):自动填补缺失区域,使其符合整体风格。
- LaMa(Large Mask Inpainting):可修复大面积缺失的照片部分,生成自然合理的内容。
6. 纹理和细节增强
最后,AI 还会对修复后的照片进行 风格匹配 和 纹理增强,确保整体效果自然:
- 光照修复:调整光影对比,让照片更有层次感。
- HDR 处理:模拟现代相机的动态范围,使图像更加清晰。
- 降噪 & 平滑处理:让照片显得更真实,不会有明显的 AI 痕迹。
下面,我们从代码角度来讲解 AI 如何进行老照片修复,并附上相关代码示例。
1. 图像预处理(去噪、去划痕)
老照片通常存在噪点、划痕等问题,我们可以使用 OpenCV 和 深度学习模型 进行处理。
(1)去噪
我们使用 OpenCV 的非局部均值去噪(Non-Local Means Denoising) 进行去噪:
import cv2
import numpy as np
# 读取老照片
image = cv2.imread("old_photo.jpg")
# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 使用非局部均值去噪
denoised = cv2.fastNlMeansDenoising(gray, None, 30, 7, 21)