拼多多2018届毕业生校招笔试题

列表补全

题目

在商城的某个位置有一个商品列表,该列表是由L1L2两个子列表拼接而成。当用户浏览并翻页时,需要从列表L1L2中获取商品进行展示。展示规则如下:

  • 用户可以进行多次翻页,用offset表示用户在之前页面已经浏览的商品数量,比如offset为4,表示用户已经看了4个商品
  • n表示当前页面需要展示的商品数量
  • 展示商品时首先使用列表L1,如果列表L1长度不够,再从列表L2中选取商品
  • 从列表L2中补全商品时,也可能存在数量不足的情况

请根据上述规则,计算列表L1和L2中哪些商品在当前页面被展示了

输入描述

每个测试输入包含1个测试用例,包含四个整数,分别表示偏移量offset、元素数量n,列表L1的长度l1,列表L2的长度l2

输出描述

在一行内输出四个整数分别表示L1和L2的区间start1end1start2end2,每个数字之间有一个空格。 
注意,区间段使用半开半闭区间表示,即包含起点,不包含终点。如果某个列表的区间为空,使用[0, 0)表示,如果某个列表被跳过,使用[len, len)表示,len表示列表的长度。

样例

in:
2 4 4 4
1 2 4 4
4 1 3 3

out:
2 4 0 2
1 3 0 0
3 3 1 2

解析

模拟题,不说了,比划一下都写得出。

代码

#include <bits/stdc++.h>

using namespace std;

int main()
{
    for (int offset, n, L1, L2; cin >> offset >> n >> L1 >> L2; ) {
        int start1, start2, end1, end2;
        if (offset >= L1)
            start1 = end1 = L1, offset -= L1;
        else
            start1 = offset, end1 = L1 - offset >= n ? offset + n : L1, offset = 0, n -= end1 - start1;
        if (offset >= L2)
            start2 = end2 = L2;
        else
            start2 = offset, end2 = L2 - offset >= n ? offset + n : L2;
        cout << start1 << " " << end1 << " " << start2 << " " << end2 <<endl;
    }
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Anniversary

题目

拼多多王国的城市和道路的拓扑结构比较特别,是一个树状结构:

  • 每个城市是树的一个节点;
  • 城市之间的道路是树的一条边;
  • 树的根节点是首都。

拼多多周年庆马上就要到了,这是拼多多王国的一个大日子。为了活跃气氛,国王想在道路上布置花灯。花灯可是很贵的东西,尽管国王想要在所有道路上都布置花灯,但是如果要花太多钱的话,是过不了财政大臣那一关的。国王把这个计划告诉财政大臣,最后他们商讨出来这么一个方案:

  • 一条道路要么不布置花灯,要么整条布置花灯,不能选择其中的某一段布置;
  • 除非没有道路通向首都,否则至少为一条通向首都的道路布置花灯;
  • 所有布置花灯的道路构成的子图是连通的,这保证国王从首都出发,能通过只走布置了花灯的道路,把所有的花灯游览完;
  • 如果某个城市(包括首都)有大于等于2条道路通向子城市,为了防止铺张浪费,最多只能选择其中的两条路布置花灯;
  • 布置花灯的道路的总长度设定一个上限。

在上述方案下,国王想要使得布置花灯的道路长度越长越好,你帮国王想想办法。 
这里写图片描述

输入描述

每个测试输入包含1个测试用例。 
输入的第一行是一个正整数m0<m<=99000<m<=9900,表示布置花灯的道路的总长度的上限。 
输入的第二行是一个正整数nn<=100n<=100,表示城市的个数。 
紧接着是n-1行输入,每行三个正整数u、v、d,表示下标为u的城市有一条长度为d的道路通向它的一个子城市v,其中0<=u<n0<=v<n0<d<=1000<=u<n,0<=v<n,0<d<=100

输出描述

输出一个正整数,表示能布置花灯的道路长度的最大值

样例

in:
5
5
0 1 1
0 2 2
0 3 3
0 4 4

out:
5

解析

由于这个题加了最大值的上限,导致我只能用set去保存每棵子树可能出现的合法长度的值;

然后就枚举从一个节点所有的儿子中选1个儿子,选2个儿子的情况;

最后的答案就是set中最后一个元素的值。

代码

#include <bits/stdc++.h>

using namespace std;

using Array = vector<int>;

set<int> dfs(int root, vector<Array> &sons, Array &d, int m)
{
    if (sons[root].size() == 0)
        return set<int>({0});
    vector<set<int> > sts;
    for (auto it = sons[root].begin(); it != sons[root].end(); ++it) {
            sts.push_back(dfs(*it, sons, d, m));
    }
    set<int> ret({0});
    for (auto it = sts.begin(); it != sts.end(); ++it)
        for (auto it2 = it->begin(); it2 != it->end(); ++it2)
            if (d[sons[root][it - sts.begin()]] + *it2 <= m)
                ret.insert(d[sons[root][it - sts.begin()]] + *it2);
    for (auto it_i = sts.begin(); next(it_i) != sts.end(); ++it_i) {
        for (auto it_j = it_i + 1; it_j != sts.end(); ++it_j) {
            for (auto it = it_i->begin(); it != it_i->end(); ++it) {
                for (auto it2 = it_j->begin(); it2 != it_j->end(); ++it2) {
                    if (d[sons[root][it_i - sts.begin()]] + d[sons[root][it_j - sts.begin()]] + *it + *it2 <= m)
                        ret.insert(d[sons[root][it_i - sts.begin()]] + d[sons[root][it_j - sts.begin()]] + *it + *it2);
                }
            }
        }
    }
    return ret;
}

int main()
{
    for (int m, n; cin >> m >> n; ) {
        vector<Array > sons(n);
        Array father(n, -1), d(n, 0);
        int root = 0;
        for (int i = 0, u, v, dd; i < n - 1; i++)
            cin >> u >> v >> dd, d[v] = dd, sons[u].push_back(v), father[v] = u;
        for (; root < (int)father.size() && father[root] != -1; ++root) {}
        set<int> st(dfs(root, sons, d, m));
        cout << (st.size() == 0 ? 0 : *st.rbegin()) << endl;
    }
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

数三角形

题目

给出平面上的n个点,现在需要你求出,在这n个点里选3个点能构成一个三角形的方案有几种。

输入描述

第一行包含一个正整数n,表示平面上有n个点(n<=100n<=100
2行到第n + 1行,每行有两个整数,表示这个点的x坐标和y坐标。(所有坐标的绝对值小于等于100,且保证所有坐标不同)

输出描述

输出一个数,表示能构成三角形的方案数。

样例

in:
4
0 0
0 1
1 0
1 1

out:
4

解析

暴力枚举3个点,然后用向量的方法判断是否三点不共线就行了。

代码

#include <bits/stdc++.h>

using namespace std;

int main()
{
    for (int n, ans = 0; cin >> n; ans = 0) {
        vector<pair<int, int> > points(n);
        for (int i = 0; i < n; cin >> points[i].first >> points[i].second, ++i) {}
        for (int i = 0; i < n - 2; i++) {
            for (int j = i + 1; j < n - 1; j++) {
                pair<int, int> a(points[j].first - points[i].first, points[j].second - points[i].second);
                for (int k = j + 1; k < n; k++) {
                    pair<int, int> b(points[k].first - points[i].first, points[k].second - points[i].second);
                    ans += a.first * b.second != a.second * b.first;
                }
            }
        }
        cout << ans << endl;
    }
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

最大乘积

题目

给定一个无序数组,包含正数、负数和0,要求从中找出3个数的乘积,使得乘积最大,要求时间复杂度:O(n)O(n),空间复杂度:O(1)O(1)

输入描述

第一行是数组大小n,第二行是无序整数数组A[n]

输出描述

满足条件的最大乘积

样例

in:
4
3 4 1 2

out:
24

解析

时间复杂度:O(n)O(n),空间复杂度:O(1)O(1)的解法是动态规划。

由于是乘积最大,因此要考虑正负对最大最小值的影响:

  • 如果当前值是正数,那么乘一个最大值还是最大值
  • 如果当前值是负数,那么乘一个最大值就变成最小值了,乘一个最小值才是最大值

因此这个题要维护6个变量dp_min_1, dp_min_2, dp_min_3,dp_max_1,dp_max_2, dp_max_3,分别表示选1、2、3个元素的乘积最小值,选1、2、3个元素乘积的最大值;

然后对选不选当前元素依据当前元素的正负去维护这6个变量就行了,最后的答案就是dp_max_3

代码

#include <bits/stdc++.h>

using namespace std;

int main()
{
    using LL = long long;
    for (LL n, x; cin >> n; ) {
        LL dp0 = 1, dp_min_1, dp_min_2, dp_min_3,
                    dp_max_1, dp_max_2, dp_max_3;
        cin >> x;
        dp_max_1 = dp_min_1 = x;
        cin >> x;
        dp_max_2 = (x > 0 ? dp_max_1 : dp_min_1) * x;
        dp_min_2 = (x > 0 ? dp_min_1 : dp_max_1) * x;
        dp_min_1 = min(dp_min_1, x);
        dp_max_1 = max(dp_max_1, x);
        cin >> x;
        dp_max_3 = (x > 0 ? dp_max_2 : dp_min_2) * x;
        dp_min_3 = (x > 0 ? dp_min_2 : dp_max_2) * x;
        dp_max_2 = max(dp_max_2, (x > 0 ? dp_max_1 : dp_min_1) * x);
        dp_min_2 = min(dp_min_2, (x > 0 ? dp_min_1 : dp_max_1) * x);
        dp_min_1 = min(dp_min_1, x);
        dp_max_1 = max(dp_max_1, x);
        for (int i = 3; i < n; i++) {
            cin >> x;
            dp_max_3 = max(dp_max_3, (x > 0 ? dp_max_2 : dp_min_2) * x);
            dp_min_3 = min(dp_min_3, (x > 0 ? dp_min_2 : dp_max_2) * x);
            dp_max_2 = max(dp_max_2, (x > 0 ? dp_max_1 : dp_min_1) * x);
            dp_min_2 = min(dp_min_2, (x > 0 ? dp_min_1 : dp_max_1) * x);
            dp_max_1 = max(dp_max_1, x);
            dp_min_1 = min(dp_min_1, x);
        }
        cout << dp_max_3 << endl;
    }
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

小熊吃糖

题目

n只小熊,他们有着各不相同的战斗力。每次他们吃糖时,会按照战斗力来排,战斗力高的小熊拥有优先选择权。前面的小熊吃饱了,后面的小熊才能吃。每只小熊有一个饥饿值,每次进食的时候,小熊们会选择最大的能填饱自己当前饥饿值的那颗糖来吃,可能吃完没饱会重复上述过程,但不会选择吃撑。 
现在给出n只小熊的战斗力和饥饿值,并且给出m颗糖能填饱的饥饿值。 
求所有小熊进食完之后,每只小熊剩余的饥饿值。

输出描述

第一行两个正整数nm,分别表示小熊数量和糖的数量。(n<=10,m<=100n<=10,m<=100) 
第二行m个正整数,每个表示着颗糖能填充的饥饿值。 
接下来的n行,每行2个正整数,分别代表每只小熊的战斗力和当前饥饿值。 
题目中所有输入的数值小于等于100。

输入描述

输出n行,每行一个整数,代表每只小熊剩余的饥饿值。

样例

in:
2 5
5 6 10 20 30
4 34
3 35
out:
4
0

解析

模拟就好了,这个题的关键是排序,先按战斗力排序,然后处理好,最后再按出现的顺序排序输出就行了。

代码

#include <bits/stdc++.h>

using namespace std;

int main()
{
    using Tuple = tuple<int, int, int>;
    for (int n, m ; cin >> n >> m; ) {
        vector<int> arr(m);
        for (int i = 0; i < m; cin >> arr[i++]) {}
        vector<Tuple> pears;
        for (int i = 0, x, y; i < n; ++i)
            cin >> x >> y, pears.emplace_back(x, y, i);
        sort(arr.begin(), arr.end());
        sort(pears.begin(), pears.end(), [] (const Tuple &A, const Tuple &B) {
                    return get<0>(A) == get<0>(B) ? get<2>(A) < get<2>(B) : get<0>(A) > get<0>(B);
                });
        for (auto it = pears.begin(); it != pears.end() && arr.size() != 0; ++it) {
            while (get<1>(*it) != 0) {
                auto it2 = lower_bound(arr.begin(), arr.end(), get<1>(*it));
                if (it2 == arr.end() && it2 == arr.begin() || it2 == arr.begin() && *it2 > get<1>(*it))
                    break;
                it2 = it2 != arr.end() && *it2 == get<1>(*it) ? it2 : prev(it2);
                get<1>(*it) -= *it2;
                arr.erase(it2);
            }
        }
        sort(pears.begin(), pears.end(), [] (const Tuple &A, const Tuple &B) {
                    return get<2>(A) < get<2>(B);
                });
        for (auto it = pears.begin(); it != pears.end(); ++it)
            cout << get<1>(*it) << endl;
    }
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值