学习排序 Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点

学习排序 Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点

Ranking 是信息检索领域的基本问题,也是搜索引擎背后的重要组成模块。本文将对结合机器学习的 ranking 技术——learning2rank——做个系统整理,包括 pointwise、pairwise、listwise 三大类型,它们的经典模型,解决了什么问题,仍存在什么缺陷。关于一些扩展话题和具体应用,可能会在下一篇文章介绍,包括在 QA 领域的实践情况。

本文主要参考刘铁岩老师的《Learning to Rank for Information Retrieval》和李航老师的《Learning to rank for information retrieval and natural language processing》。

1、概述

1.1 Ranking

Ranking 模型可以粗略分为基于相关度和基于重要性进行排序的两大类。 
早期基于相关度的模型,通常利用 query 和 doc 之间的词共现特性(如布尔模型)、VSM(如 TFIDF、LSI 等)、概率排序思想(BM25、LMIR 等)等方式。 
基于重要性的模型,利用的是 doc 本身的重要性,如 PageRank、TrustRank 等。 
这里我们关注基于相关度的 ranking。

相关度的标注

最流行也相对好实现的一样方式时,人工标注 MOS,即相关度等级。
其次是,人工标注 pairwise preference,即一个 doc 是否相对另一个 doc 与该 query 更相关。
最 costly 的方式是,人工标注 docs 与 query 的整体相关度排序。

评估指标

即评估 query 与 docs 之间的真实排序与预测排序的差异。 
大部分评估指标都是针对每组 query-docs 进行定义,然后再在所有组上进行平均。常用的基于度量的 ranking 错误率如下

MAP 
首先,suppose we have binary judgment for the documents, i.e., the label is one for relevant documents and zero for irrelevant documents,定义docs 排序列表 π 中位置 k 的 precision 为 

这里写图片描述

其次,令 m 为该 query 对应的 docs 数量,m_1 为该 query 对应的标签为1的 docs 数量,则有 average precision(AP)为 

这里写图片描述

最后,对所有 query 求得 AP 进行平均,即得到 MAP。

NDCG 
首先,Discounted cumulative gain (DCG)考量了 relevance judgment in terms of multiple ordered categories,以及对位置信息进行了折扣考量。定义 docs 排序列表 π 中位置 k 的 DCG 为 

这里写图片描述

其中,函数 G 是 对应 doc 的 rating 值,通常采用指数函数,如 G(x)=2^x-1,函数 η 即位置折扣因子,通常采用 η(j)=1/log(j+1)。 
其次,对 DCG@k 进行归一化,规整到0-1,Z_k 表示 DCG@k 的可能最大值,从而有 NDCG 

这里写图片描述
可以发现,这些评估指标具备两大特性:

1)基于 query ,即不管一个 query 对应的 docs 排序有多糟糕,也不会严重影响整体的评价过程,因为每组 query-docs 对平均指标都是相同的贡献。
2)基于 position ,即显式的利用了排序列表中的位置信息,这个特性的副作用就是上述指标是离散不可微的。
一方面,这些指标离散不可微,从而没法应用到某些学习算法模型上;另一方面,这些评估指标较为权威,通常用来评估基于各类方式训练出来的 ranking 模型。因此,即使某些模型提出新颖的损失函数构造方式,也要受这些指标启发,符合上述两个特性才可以。这些细节在后面会慢慢体会到。

1.2 Learning to Rank

Learning2Rank 即将 ML 技术应用到 ranking 问题,训练 ranking 模型。通常这里应用的是判别式监督 ML 算法。经典 L2R 框架如下 

这里写图片描述
特征向量 x 反映的是某 query 及其对应的某 doc 之间的相关性,通常前面提到的传统 ranking 相关度模型都可以用来作为一个维度使用。
L2R 中使用的监督机器学习方法主要是判别式类。
根据上图的基本元素(输入空间、假设空间、输出空间、损失函数)方面的差异,L2R可以分为三大类,pointwise 类,pairwise 类,listwise 类。总结如下,后面章节将进行详细说明。 

这里写图片描述
2、Pointwise Approach

2.1 特点

Pointwise 类方法,其 L2R 框架具有以下特征:

  • 输入空间中样本是单个 doc(和对应 query)构成的特征向量;
  • 输出空间中样本是单个 doc(和对应 query)的相关度;
  • 假设空间中样本是打分函数;
  • 损失函数评估单个 doc 的预测得分和真实得分之间差异。

这里讨论下,关于人工标注标签怎么转换到 pointwise 类方法的输出空间:

1.如果标注直接是相关度 s_j,则 doc x_j 的真实标签定义为 y_j=s_j
2.如果标注是 pairwise preference s_{u,v},则 doc x_j 的真实标签可以利用该 doc 击败了其他 docs 的频次
3.如果标注是整体排序 π,则 doc x_j 的真实标签可以利用映射函数,如将 doc 的排序位置序号当作真实标签
根据使用的 ML 方法不同,pointwise 类可以进一步分成三类:基于回归的算法、基于分类的算法,基于有序回归的算法。下面详细介绍。

2.2 基于回归的算法

此时,输出空间包含的是实值相关度得分。

采用 ML 中传统的回归方法即可。

2.3 基于分类的算法

此时,输出空间包含的是无序类别。

对于二分类,SVM、LR 等均可;对于多分类,提升树等均可。

2.4 基于有序回归的算法

此时,输出空间包含的是有序类别。

通常是找到一个打分函数,然后用一系列阈值对得分进行分割,得到有序类别。采用 PRanking、基于 margin 的方法都可以。

2.5 缺陷

回顾概述中提到的评估指标应该基于 query 和 position,

ranking 追求的是排序结果,并不要求精确打分,只要有相对打分即可。
pointwise 类方法并没有考虑同一个 query 对应的 docs 间的内部依赖性。一方面,导致输入空间内的样本不是 IID 的,违反了 ML 的基本假设,另一方面,没有充分利用这种样本间的结构性。其次,当不同 query 对应不同数量的 docs 时,整体 loss 将会被对应 docs 数量大的 query 组所支配,前面说过应该每组 query 都是等价的。
损失函数也没有 model 到预测排序中的位置信息。因此,损失函数可能无意的过多强调那些不重要的 docs,即那些排序在后面对用户体验影响小的 doc。

2.6 改进

Pointwise 类算法也可以再改进,比如在 loss 中引入基于 query 的正则化因子的 RankCosine 方法。

3、Pairwise Approach

3.1 特点

Pairwise 类方法,其 L2R 框架具有以下特征:

  • 输入空间中样本是(同一 query 对应的)两个 doc(和对应 query)构成的两个特征向量;
  • 输出空间中样本是 pairwise preference;
  • 假设空间中样本是二变量函数;
  • 损失函数评估 doc pair 的预测 preference 和真实 preference 之间差异。

这里讨论下,关于人工标注标签怎么转换到 pairwise 类方法的输出空间:

1.如果标注直接是相关度 s_j,则 doc pair (x_u,x_v) 的真实标签定义为 y_{u,v}=2*I_{s_u>s_v}-1
2.如果标注是 pairwise preference s_{u,v},则 doc pair (x_u,x_v) 的真实标签定义为y_{u,v}=s_{u,v}
3.如果标注是整体排序 π,则 doc pair (x_u,x_v) 的真实标签定义为y_{u,v}=2*I_{π_u,π_v}-1

3.2 基于二分类的算法

pairwise 类方法基本就是使用二分类算法即可。

经典的算法有 基于 NN 的 SortNet,基于 NN 的 RankNet,基于 fidelity loss 的 FRank,基于 AdaBoost 的 RankBoost,基于 SVM 的 RankingSVM,基于提升树的 GBRank。

3.3 缺陷

虽然 pairwise 类相较 pointwise 类 model 到一些 doc pair 间的相对顺序信息,但还是存在不少问题,回顾概述中提到的评估指标应该基于 query 和 position,

如果人工标注给定的是第一种和第三种,即已包含多有序类别,那么转化成 pairwise preference 时必定会损失掉一些更细粒度的相关度标注信息。
doc pair 的数量将是 doc 数量的二次,从而 pointwise 类方法就存在的 query 间 doc 数量的不平衡性将在 pairwise 类方法中进一步放大。
pairwise 类方法相对 pointwise 类方法对噪声标注更敏感,即一个错误标注会引起多个 doc pair 标注错误。
pairwise 类方法仅考虑了 doc pair 的相对位置,损失函数还是没有 model 到预测排序中的位置信息。
pairwise 类方法也没有考虑同一个 query 对应的 doc pair 间的内部依赖性,即输入空间内的样本并不是 IID 的,违反了 ML 的基本假设,并且也没有充分利用这种样本间的结构性。

3.4 改进

pairwise 类方法也有一些尝试,去一定程度解决上述缺陷,比如:

Multiple hyperplane ranker,主要针对前述第一个缺陷
magnitude-preserving ranking,主要针对前述第一个缺陷
IRSVM,主要针对前述第二个缺陷
采用 Sigmoid 进行改进的 pairwise 方法,主要针对前述第三个缺陷
P-norm push,主要针对前述第四个缺陷
Ordered weighted average ranking,主要针对前述第四个缺陷
LambdaRank,主要针对前述第四个缺陷
Sparse ranker,主要针对前述第四个缺陷

4、Listwise Approach

4.1 特点

Listwise 类方法,其 L2R 框架具有以下特征:

  • 输入空间中样本是(同一 query 对应的)所有 doc(与对应的 query)构成的多个特征向量(列表);
  • 输出空间中样本是这些 doc(和对应 query)的相关度排序列表或者排列;
  • 假设空间中样本是多变量函数,对于 docs 得到其排列,实践中,通常是一个打分函数,根据打分函数对所有 docs 的打分进行排序得到 docs 相关度的排列;
  • 损失函数分成两类,一类是直接和评价指标相关的,还有一类不是直接相关的。具体后面介绍。

这里讨论下,关于人工标注标签怎么转换到 listwise 类方法的输出空间:

1.如果标注直接是相关度 s_j,则 doc set 的真实标签可以利用相关度 s_j 进行比较构造出排列
2.如果标注是 pairwise preference s_{u,v},则 doc set 的真实标签也可以利用所有 s_{u,v} 进行比较构造出排列
3.如果标注是整体排序 π,则 doc set 则可以直接得到真实标签
根据损失函数构造方式的不同,listwise 类可以分成两类直接基于评价指标的算法,间接基于评价指标的算法。下面详细介绍。

4.2 直接基于评价指标的算法

直接取优化 ranking 的评价指标,也算是 listwise 中最直观的方法。但这并不简单,因为前面说过评价指标都是离散不可微的,具体处理方式有这么几种:

优化基于评价指标的 ranking error 的连续可微的近似,这种方法就可以直接应用已有的优化方法,如SoftRank,ApproximateRank,SmoothRank
优化基于评价指标的 ranking error 的连续可微的上界,如 SVM-MAP,SVM-NDCG,PermuRank
使用可以优化非平滑目标函数的优化技术,如 AdaRank,RankGP
上述方法的优化目标都是直接和 ranking 的评价指标有关。现在来考虑一个概念,informativeness。通常认为一个更有信息量的指标,可以产生更有效的排序模型。而多层评价指标(NDCG)相较二元评价(AP)指标通常更富信息量。因此,有时虽然使用信息量更少的指标来评估模型,但仍然可以使用更富信息量的指标来作为 loss 进行模型训练。

4.3 非直接基于评价指标的算法

这里,不再使用和评价指标相关的 loss 来优化模型,而是设计能衡量模型输出与真实排列之间差异的 loss,如此获得的模型在评价指标上也能获得不错的性能。 
经典的如 ,ListNet,ListMLE,StructRank,BoltzRank。

4.4 缺陷

listwise 类相较 pointwise、pairwise 对 ranking 的 model 更自然,解决了 ranking 应该基于 query 和 position 问题。

listwise 类存在的主要缺陷是:一些 ranking 算法需要基于排列来计算 loss,从而使得训练复杂度较高,如 ListNet和 BoltzRank。此外,位置信息并没有在 loss 中得到充分利用,可以考虑在 ListNet 和 ListMLE 的 loss 中引入位置折扣因子。

5、总结

实际上,前面介绍完,可以看出来,这三大类方法主要区别在于损失函数。不同的损失函数知音了不同的模型学习过程和输入输出空间。

【转载】:https://blog.csdn.net/lipengcn/article/details/80373744 
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值